arXiv:2512.06660v1 [cs.CR] 7 Dec 2025

Towards Small Language Models for Security Query Generation
in SOC Workflows

Saleha Muzammil*
evzdsc@virginia.edu
University of Virginia

Rahul Reddy"
dgb5ty@virginia.edu
University of Virginia

Vishal Kamalakrishnan
vishkamalk@gmail.com
University of Virginia

United States United States United States
Hadi Ahmadi Wajih Ul Hassan
hadi@corvic.ai hassan@virginia.edu
Corvic University of Virginia
United States United States
Abstract DeviceNetworkEvents
. | where Timestamp >= ago(7d)

Analysts in Security Operations Centers routinely query massive | where ActionType == 'ConnectionSuccess’ ‘
telemetry streams using Kusto Query Language (KQL). Writing : ;;:Tzriiiaﬂs‘!ix(;;m?;t?‘;pw rocallP) by Deviceld
correct KQL requires specialized expertise, and this dependency | project Deviceld

creates a bottleneck as security teams scale. This paper investi-
gates whether Small Language Models (SLMs) can enable accurate,
cost-effective natural-language-to-KQL translation for enterprise
security. We propose a three-knob framework targeting prompt-
ing, fine-tuning, and architecture design. First, we adapt existing
NL2KQL framework for SLMs with lightweight retrieval and intro-
duce error-aware prompting that addresses common parser failures
without increasing token count. Second, we apply LoRA fine-tuning
with rationale distillation, augmenting each NLQ-KQL pair with
a brief chain-of-thought explanation to transfer reasoning from a
teacher model while keeping the SLM compact. Third, we propose
a two-stage architecture that uses an SLM for candidate generation
and a low-cost LLM judge for schema-aware refinement and selec-
tion. We evaluate nine models (five SLMs and four LLMs) across
syntax correctness, semantic accuracy, table selection, and filter
precision, alongside latency and token cost. On Microsoft’s NL2ZKQL
Defender Evaluation dataset, our two-stage approach achieves 0.987
syntax and 0.906 semantic accuracy. We further demonstrate gen-
eralizability on Microsoft Sentinel data, reaching 0.964 syntax and
0.831 semantic accuracy. These results come at up to 10x lower
token cost than GPT-5, establishing SLMs as a practical, scalable
foundation for natural-language querying in security operations.

1 Introduction

The evolving cybersecurity landscape has increased attack com-
plexity and reshaped how analysts mitigate threats. In Security
Operations Centers (SOCs), analysts face overwhelming volumes
of event logs, network traffic, and threat intelligence feeds [6],
receiving on average 5,000 alerts per day via SIEM systems and
up to 100,000 in extreme cases [4]. To investigate these massive
logs, they rely on query languages such as Sigma, Elastic EQL, and
KQL [2, 10, 28], but translating natural-language intent into correct
queries over large, evolving schemas remains a major bottleneck.
KQL, introduced by Microsoft in 2017 [19], is the most widely
adopted. Integrated into Microsoft Sentinel and Defender, it is a

“Equal contribution; authors sorted alphabetically by last name.
Not responsible for any DeepSeek-related experiments or analysis in this paper.

Listing 1: Example KQL query that retrieves device IDs
which last connected from IP address 89.12.55.1 within the
last 7 days. The query references multiple columns in the
DeviceNetworkEvents table schema, including Timestamp.

domain-specific, read-only language that lets analysts parse mil-
lions of log rows efficiently and extract relevant events. However,
its expressiveness and non-trivial semantics make authoring accu-
rate queries challenging for non-experts, especially during time-
sensitive investigations.

In the era of LLMs, automated KQL generation can further accel-
erate investigations by producing precise queries aligned with an
analyst’s intent. Beyond code generation, LLMs have been applied
across cybersecurity tasks, such as log analysis and penetration
testing [8, 23]. They have also been exploited for offensive pur-
poses, including phishing and ransomware planning [13], while
models like GPT-3.5 and GPT-4 show strong defensive potential in
areas such as scam detection [17]. However, LLM-centric pipelines
for NLQ-to-KQL translation can be costly, latency-sensitive, and
difficult to deploy under enterprise data-governance constraints.

Unfortunately, LLMs also incur drawbacks, including higher
latency, memory demands, and operational costs. Moreover, de-
pending on the use case, they may be unsuitable for certain tasks
[7]. As an alternative, we introduce SLMs, defined following [7]
as language models that (i) can run on common consumer devices
with practical inference latency, (ii) are not LLMs, and (iii) have
at most 10 billion parameters. SLMs offer lower latency, memory,
computational, and operational costs while still achieving accuracy
comparable to LLMs in some domain-specific tasks [7]. Despite this
promise, there has been no systematic study of SLMs for NLQ-to-
KQL translation in realistic, schema-rich settings.

This work fills that gap through three orthogonal enhancement
knobs (prompting, fine-tuning, and two-staged architecture design)
and a comprehensive empirical study. We provide the first system-
atic evaluation of SLMs for NLQ-to-KQL translation across multiple
accuracy metrics, latency, and cost, establishing clear baselines
against representative LLMs. We adapt the NL2KQL architecture

https://arxiv.org/abs/2512.06660v1

Saleha Muzammil, Rahul Reddy, Vishal Kamalakrishnan, Hadi Ahmadi, and Wajih Ul Hassan

for SLMs by replacing heavy components with lightweight alter-
natives while preserving the prompting, retrieval, and refinement
structure so that results are both comparable and cost efficient.
We also introduce error-aware prompting based on common KQL
parser failures, which improves syntactic and semantic correctness
without increasing token count.

We further explore LoRA fine-tuning [15] with rationale distilla-
tion to transfer reasoning from a teacher LLM into an SLM. LoRA
trains only low-rank adapter parameters while freezing the original
model weights, enabling efficient fine-tuning on NLQ-KQL pairs. To
embed reasoning capabilities, each training example is augmented
with a short chain-of-thought explanation produced by the teacher
model, followed by the target KQL. This rationale-augmented setup
allows the SLM to learn intermediate reasoning steps in addition
to final outputs, strengthening its ability to handle structured code
generation tasks without increasing model size.

Beyond prompting and fine-tuning, our core contribution is a
two-stage SLM-Oracle architecture for KQL generation. The first
stage uses an SLM to efficiently generate candidate queries, while
the second employs a lightweight LLM as an Oracle to validate,
refine, and select the best output using schema information and
parsing feedback. This division of labor lets the SLM focus on
fast generation and the Oracle on correctness, creating a scalable
architecture that balances efficiency and accuracy. This design is the
key novelty of our work, combining the complementary strengths
of SLMs and LLMs in a modular, resource-conscious framework for
real-world security analytics.

We conduct extensive experiments spanning baseline perfor-
mance, prompting strategies, fine-tuning, and architectural de-
sign. Our evaluation covers nine models: five SLMs (Gemma-3-1B-
IT, Gemma-3-4B-1T, Phi-4-Mini-Instruct,Qwen-2.5-7B-Instruct-1M,
and DeepSeek Coder 6.7B Instruct) and four LLMs (GPT-5, GPT-4o,
Gemini 2.0 Flash, and Phi-4), using 230 NLQ-KQL pairs from Mi-
crosoft’s NL2KQL Defender Evaluation Dataset [1] and 83 additional
queries from Sentinel-Queries [35] for generalization. LLMs achieve
high syntactic accuracy (above 0.90) but show variable semantic
correctness, while SLMs perform poorly in zero-shot settings, with
semantic scores near 0 and table/filter scores below 0.1. Targeted
prompting and LoRA fine-tuning with rationale distillation signifi-
cantly improve SLM performance, especially for DeepSeek Coder
6.7B Instruct with NL2KQL. Our two-stage SLM-Oracle architec-
ture achieves a syntax score of 0.987 and semantic score of 0.906 on
Microsoft’s NL2KQL Defender Evaluation dataset. We demonstrate
generalizability on Microsoft Sentinel data with a syntax score of
0.964 and semantic score of 0.831, approaching LLM performance
while remaining up to 10x cheaper in token cost than GPT-5. These
findings show that SLMs, when combined with lightweight LLM
refinement, enable accurate and cost-efficient KQL generation at
scale.

Our paper makes the following main contributions:

o We present the first systematic evaluation of SLMs for NLQ-to-
KQL translation.

e We adapt NL2KQL for SLMs with lightweight components, in-
troduce error-aware prompting to boost correctness without
increasing token count, and apply LoRA fine-tuning with ratio-
nale distillation to transfer teacher reasoning to SLMs.

e We propose a two-stage architecture where an SLM generates
candidate queries and a low-cost LLM refines them.

e Our approach achieves near-LLM syntax accuracy, strong
semantic performance, and up to 10x lower cost, while
maintaining low latency and generalizing effectively to unseen
schemas.

Availability. Our code is available at https://github.com/DART-
Laboratory/sIms-for-kql

2 Related Work

NATURAL LANGUAGE TO QUERY GENERATION Converting NLQs to
structured queries has been widely studied across domains and
languages. Early work [5, 20, 25] translated NLQs to SQL using
rule-based methods and custom heuristics, but extending these
techniques to new databases and languages demands substantial
manual effort and struggles with edge cases [30]. Neural methods
improve portability by casting text-to-SQL as sequence generation
with integrated validation. PICARD [27] uses sequence-to-sequence
models with modular syntactic checks to ensure query correctness
and alignment with the NLQ. Supplying schema context further
improves semantic fidelity [14]. In practice, these ideas combine
constrained decoding for syntax with schema-aware prompting or
retrieval for semantics, directly informing our KQL setting. Unlike
prior systems that center on a single model, our approach uses both
SLMs and LLMs. These general principles have been extended to
domain-specific query languages, especially in security, where KQL
is the primary language for threat hunting and log analysis. NL2KQL
[30] translates NLQs to KQL by combining embedding-based se-
mantic similarity with few-shot prompting in a modular, end-to-end
framework. XPert [18] takes an incident-centric approach, retriev-
ing similar historical tickets to recommend or compose queries
using in-context learning with embedding-based retrieval. How-
ever, both systems rely heavily on LLMs, resulting in cost and
latency constraints that limit real-time SOC deployment, where
analysts need rapid query assistance. In contrast, our approach uses
an SLM for generation, avoiding exclusive dependence on LLMs.

SECURITY-SPECIFIC LLMs LLMs are increasingly applied across SOC
tasks and offensive evaluations, but their effectiveness hinges on
task-specific scaffolding and verification. VulDetect [23] fine-tunes
GPT-style models for anomaly detection in logs using a transformer-
based framework. PentestGPT [8] builds an LLM penetration-testing
assistant with modular task support, reporting bounded gains on
real targets, highlighting the importance of structured tooling
around the model. Although LLMs offer strong code generation
capabilities, their cost and latency often make real-time deployment
impractical [7], pushing real-time operations toward SLMs.

SLMs AporTIioN SLMs provide attractive latency and cost profiles
for SOC settings but require augmentation to match LLM qual-
ity. SuperICL shows that small, locally fine-tuned models can act
as plug-ins to larger LLMs, structuring context while the larger
model executes—a useful division of labor for SOC workflows [32].
Parameter-efficient fine-tuning further narrows this gap while pre-
serving efficiency; methods like LoRA and QLoRA enable targeted

https://github.com/DART-Laboratory/slms-for-kql
https://github.com/DART-Laboratory/slms-for-kql

Towards Small Language Models for Security Query Generation in SOC Workflows

(LORA Fine-Tuning and\ (

Prompt Scheme Two-Staged
Enhancements COT Distillation Multi-Agent Architecture
>=¢ Teacher: Gemini 2.0 Flash

[]
—Tm

Syntactic Prompt Training Target:

Enhancements EXPLANATION + KQL
= oee
>_— Supervised Fine-Tuning
Semantic Prompt SLMand Oracle
Enhancements Refinement

6.7B Instruct
o AN J

Figure 1: Orthogonal Enhancement Knobs: Prompting
Scheme Enhancements Fine-Tuning with LoRA, and Multi-
SLM Architecture with Oracle Refinement

adaptation on modest hardware [9, 15, 21]. Complementary tech-
niques such as schema/value retrieval, few-shot selection, and best-
of-N with an external judge improve correctness without enlarging
model footprint [22, 31]. In sum, SLMs are viable for SOC use when
paired with retrieval, schema hints, and parameter-efficient tuning.

3 Methodology

3.1 Problem Statement

We seek to formally define the problem space of SLM KQL code
generation, which guides the design of our evaluation framework.
A NLQ is defined as a request that a user wishes to be answered
in terms of KQL. The set 7~ represents the set of all possible NLQs.
A schema is defined as the columns that are associated with each
single table in KQL. The set S represents the set of all possible
schema contexts that are associated with tables in KQL. Lastly, the
set Q represents the set of all possible KQL queries.

Given an NLQ, ¢t € 7 and optional schema context s € S, the
main objective is for a model to produce a syntactically and seman-
tically valid KQL query ¢ € Q. We study a translator configured
by three orthogonal enhancement knobs: P (Prompting Scheme
Enhancements), M (Multi-SLM Architecture with Oracle Refine-
ment), and F (Fine-Tuning with LoRA). Each configuration induces
a mapping:

Fremr: (t,s) — 4
for a base model £, and we evaluate § with syntax validity, se-
mantic equivalence, table and filter metrics, latency, and cost. Our
experiments vary these knobs to quantify the marginal contribution
of each knob while keeping the base model and datasets fixed.

3.2 Zero-Shot Prompting

The Zero-Shot prompting strategy aims to interact with the model
without containing any relevant examples or demonstrations [26].
Zero-Shot prompting can be an extremely powerful technique, as
it typically utilizes less tokens than other prompting strategies and
relies mostly on the inference capabilities of the language model
itself. Furthermore, instruction tuning has been shown to improve
Zero-Shot learning capabilities [24].

We begin by testing with Zero-Shot prompting strategies. Zero-
Shot prompting strategies allow us to establish a baseline perfor-
mance for how SLMs perform in developing KQL queries without
any supplemental information. Furthermore, it allows us to un-
derstand how powerful the model is in generating relevant KQL

queries as a standalone system. The first prompting strategy is
outlined in Figure 4 in Appendix A.

In this first prompting strategy, we set the context for the SLM
to understand that they are to generate a KQL query that meets
the needs of an NLQ. We then provide the NLQ and allow the SLM
to think about what may constitute as a valid KQL query with
respect to the NLQ provided. This allows us to establish a baseline
of how SLMs perform with respect to generating KQL queries as a
standalone system.

3.3 NL2KQL-Inspired Prompting

In addition to Zero-Shot prompting, we re-implement NL2KQL [30],
the state-of-the-art system for KQL query generation. NL2KQL
consists of five main components: Semantic Data Catalog, Schema
Refiner, Few-Shot Selector, Prompt Builder, and Query Refiner. For
detailed descriptions of these components, we refer the reader to
the original paper [30]. Below, we describe the changes we made
in our recreation.

3.3.1 Semantic Data Catalog. We recreate the Semantic Data Cat-
alog by generating table and value embeddings from the Microsoft
Defender schema. While NL2KQL relies on the text-embedding-ada-
002 embedding model to generate embeddings, we use Google’s
text-embedding-004 model to construct both the Table Embed-
ding Store and Value Embedding Store. Google’s text-embedding-
004 model is lightweight, and provides embeddings at a cost of
$0.025 per one million input tokens, compared to $0.10 per one mil-
lion input tokens for text-embedding-ada-002 embedding model.

3.3.2 Schema Refiner. Consistent with [30], the Schema Refiner
retrieves the top-t relevant tables and associated columns using
cosine similarity between the NLQ and the embeddings. As in the
original, t = 9 and v, = 5. We follow the same procedure but base
our embeddings on the recreated Semantic Data Catalog.

3.3.3 Few-Shot Selector. The original NL2KQL constructs a Few-
Shot Synthetic Database (FSDB) from synthetic NLQ-KQL pairs
sampled from Microsoft Defender tables and categorized into five
themes (Explore, Expansion, Detect, Remediate, Report). While it
discards invalid primary and secondary queries during generation,
we generate all pairs first and then assess syntactic and semantic
correctness, improving overall efficiency and resource use. We use
Google Gemini 2.0 Flash to build the FSDB, which enables fast
generation and produces mostly correct KQL queries. As in the
original, the top-t tables from the Schema Refiner filter the FSDB,
and the top-f examples (f = 2) are selected using cosine similarity
to the NLQ.

3.3.4 Prompt Builder. We preserve the design of the Prompt Builder
from [30], which combines detailed instructions, syntax rules, best
practices, and few-shot examples into a single prompt template.

3.3.5 Query Refiner. We implement the Query Refiner follow-
ing [30], which uses Microsoft’s KQL Parser [2] to verify syntactic
and semantic correctness, detect undefined identifiers, repair ag-
gregate functions, fix parentheses, and add missing operators. We
retain the embedding-based replacement strategy with a cosine
similarity threshold of 0.9.

Saleha Muzammil, Rahul Reddy, Vishal Kamalakrishnan, Hadi Ahmadi, and Wajih Ul Hassan

3.3.6 Alternative Prompting Strategies. Beyond faithfully reimple-
menting NL2KQL [30], we introduce prompting strategies that
supply models with targeted tips on common errors. The first fo-
cuses on frequent syntactic issues identified via the KQL Parser.
The second adds guidance for semantic errors such as mismatched
column types and invalid table references. We compare both strate-
gies and adopt the one with the highest correctness. Due to SLMs’
limited inference capabilities, concise, model-specific tips help them
generate more accurate KQL compared to supplying the full syntax
and semantic rules. Our reimplementation substitutes Google’s
text-embedding-004 for embeddings, uses Google Gemini 2.0
Flash and Microsoft Phi-4 for query generation, and shifts cor-
rectness filtering to post-generation. We further extend prompting
with error-aware instructions to assess whether targeted guidance
improves KQL generation.

3.4 LoRA Fine-Tuning with LLM Distillation

To further assess the quality of KQL queries that are generated
from SLMs, we also test LoRA, a fine-tuning method that freezes
pre-trained model weights from language models, and applies de-
compositional matrices to transformers layers within the LLM in
order to alter a subset of model weights [15]. The goal of this
method is to train SLMs on NLQ-KQL pairs so that SLMs can be
further improved in producing quality responses. LoRA can be
mathematically defined as follows:

Given a weight matrix, ‘W, we decompose the weight matrix
into two smaller matrices such that:

W =W + AW =W + AB

Where B € R¥" A € Rk and both are low-rank matrices.
During training time, the values of the original weight matrix W
remain stable while AW (AB) is updated. Altering low-rank matrices
instead of the entire weight matrix reduces the memory require-
ments, gradient storage, and optimizer states needed to perform
fine-tuning [21]. To train the DeepSeek Coder 6.7B Instruct, we use
a synthesized dataset created through LLM Knowledge Distillation.

LLM Knowledge Distillation is a transfer learning technique in
Machine Learning that is used to relay the inference and reasoning
capabilities of larger, proprietary LLMs to smaller SLMs. This allows
the SLMs to preserve its nature of greater efficiency, deployment
feasibility, and faster inference capabilities while also receiving the
knowledge of LLMs in its own reasoning processes [33].

Using the same process that was used to create a FSDB when
reimplementing NL2KQL, we create a synthetic dataset of 1,000
NLQ-KQL pairs that are verified to be syntactically and semanti-
cally correct using the KQL Parser. The teacher model that is used
to create the synthetic dataset of NLQ-KQL pairs is Gemini 2.0
Flash. We choose Gemini 2.0 Flash as a teacher model due to lower
input/output token costs while also showing promise in generat-
ing syntactically and semantically correct KQL queries. To expose
the student to reasoning signals, we augment each NLQ-KQL pair
with a short chain-of-thought (CoT) explanation generated by the
teacher (Gemini 2.0 Flash). During supervised fine-tuning, the target
sequence is a two-part output: the explanation followed by the final
KQL. At inference, we report results for both reason-then-answer
decoding (model emits explanation and KQL) and answer-only de-
coding (model emits KQL directly). This rationale-augmented setup

Oracle Prompting Methods

Oracle for Retrieval and General Refinement:
Given a Natural Language Query and a list of KQL queries, determine which of
the following KQL queries is most syntactically and semantically correct:

Natural Language Query:
Responses:

Make changes as necessary to refine the best KQL query, and ensure
that each column in the KQL query belongs to its respective table(s). Return the
correct answer without explanation.

Oracle for Retrieval and Schema Context:
Given a Natural Language Query and a list of KQL queries, determine which of
the following KQL queries is most syntactically and semantically correct:

Natural Language Query:
Responses:

Make changes as necessary to refine the best KQL query, and ensure
that each column in the KQL query belongs to its respective table(s). You may
use the following tables and columns:

{SCHEMA}

Return the correct answer without explanation.

Figure 2: Oracle prompting templates used to guide refine-
ment of model-generated KQL queries. The first oracle uses
retrieval and refinement only, while the second incorporates
schema context.

aims to distill not only the teacher’s answers but also its transforma-
tion process, improving robustness and compositional correctness
without increasing model size. Then using the LoRA Fine-Tuning
technique, we fine-tune a student model, DeepSeek Coder 6.7B
Instruct, using supervised fine-tuning. Of the 1,000 NLQ-KQL pairs
generated, 800 NLQ-KQL pairs are used for fine-tuning the SLM
and 200 of the NLQ-KQL pairs are used as a validation set.

3.5 Two-Staged Architecture

To improve KQL generation quality from SLMs, we adopt a Two-
Staged Architecture using LangChain to route queries through a
single DeepSeek Coder 6.7B Instruct instance with temperature set
to 1. Using SLMs for initial generation reduces costs compared to
LLMs, which are more expensive for large inputs. The SLM out-
puts are then passed to an Oracle model, Gemini 2.0 Flash, which
selects the best syntactic and semantic response while keeping
token usage low. The Oracle further refines the chosen KQL to
maximize correctness. This design builds on NL2KQL but adapts
it for SLMs. We retain the Semantic Data Catalog, Schema Refiner,
and Prompt Builder, but replace the Query Refiner with the Ora-
cle, which revises the KQL to ensure both syntactic and semantic
validity.

As described in Section 3.3.2, the Schema Refiner retrieves the top
t relevant tables based on cosine similarity. In our modified pipeline,
we select top 5 instead of top 9 values and omit column values
to reduce token count and prevent SLM hallucinations. Table 10
outlines the effects of varying the number of tables provided on
overall metrics. Using the few-shot examples selected as described
in Section 3.3.3, we feed these to a DeepSeek Coder 6.7B Instruct

Towards Small Language Models for Security Query Generation in SOC Workflows

Prompt Builder KQL

Revised Prompt —— DeepSeek Coder o Gemini 2.0 Flash
6.7B Instruct

H J

Semantic Data Catalog -
[Table and Value Embedding Stores]

Few-Shots Embedding Store

Filter by Top 5 I

¥

[Top 5 Tables + Semantic Similarity
SEARENEE S!mllanty ([Schemas H Matching
Matching .
' \\ Schema Refiner
Top 2 Few-Shots

Few-Shot Selector [7. ok q‘ Natural Query gcg

Analyst

Figure 3: Two-Stage Architecture with Oracle Refinement.
The NLQ is embedded to retrieve the Top 5 relevant tables,
which guide the selection of Top 2 few-shot examples. These
are processed by DeepSeek Coder 6.7B Instruct, and the out-
puts are refined by the Oracle model.

instance. We then replace the Query Refiner (Section 3.3.5) with an
oracle LLM as it allows for a more automated process, and allows for
different types of errors to be fixed. A full diagram of our approach
can be seen in Figure 3.

The oracle operates in two modes. In refinement-only, it selects
and edits the best SLM candidate using the judge model’s inter-
nal knowledge. In schema-aware refinement, it performs the same
process but with explicit schema context. We evaluate both modes
using two prompts (Figure 2). The oracle is instantiated as an LLM-
as-a-Judge, leveraging evidence that judge models align well with
human preferences while exhibiting recognizable biases [34].

4 Evaluation

We evaluate the effectiveness of our proposed design through a
series of experiments conducted on a machine with an AMD EPYC
9534 64-Core Processor, an NVIDIA H100 NVL GPU, and Ubuntu
22.04.5 LTS. We address seven research questions (RQs) as follows.
For all RQs, we access and query SLMs using the Huggingface
Python package [16], which avoids input/output token rate lim-
its. For RQ5 and RQ6, we query Google Gemini 2.0 Flash via the
Google GenAl package [11]. Our re-implemented NL2KQL pipeline
(Section 3.3) is evaluated using Gemini 2.0 Flash, Phi-4, and GPT-4o.

o RQ1: What is the baseline KQL reasoning ability of LLMs and
SLMs without enhancements?

e RQ2: How well does NL2KQL perform with SLMs?

e RQ3: How do different prompting schemes affect NL2KQL with
SLMs?

e RQ4: How effective is LoRA fine-tuning for SLM-based KQL
generation?

e RQ5: Can a two-stage architecture with Oracle refinement match
or surpass LLM performance at lower cost?

e RQ6: How well does the two-stage architecture generalize to
unseen schemas and tables?

o RQ7: What are the hyperparameter search results for different
components of the two-stage architecture?

Due to space constraints, we provide results for RQ6 and RQ7 in
the Appendix C.1 and Appendix D.

Model Input Cost Output Cost
OpenAl GPT-5 $1.25 $10.00
OpenAl GPT-40 $2.50 $10.00
Google Gemini 2.0 Flash $0.10 $0.40
Microsoft Phi-4 $0.075 $0.30
Qwen-2.5-7B-Instruct-1M $0.15 $0.15
Microsoft Phi-4-Mini $0.15 $0.15
DeepSeek Coder 6.7B Instruct $0.15 $0.15
Gemma-3-4B-IT $0.15 $0.15
Gemma-3-1B-IT $0.10 $0.10

Table 1: Costs per 1 million tokens of input and 1 million
tokens of output from LLMs and SLMs

DaAtaseTs RQ1-RQ5 are evaluated using Microsoft’s NL2KQL De-
fender Evaluation Dataset [1], which contains 230 NLQ-KQL pairs
referencing all tables in the NL2KQL Defender Schema. Instead of
feeding NLQs directly to the models, we embed them in different
prompting strategies and compare the generated queries against the
baseline pairs to measure syntactic, semantic, and structural simi-
larity. For RQ6, we obtained 83 NLQ-KQL pairs from the Microsoft
Defender sections of Sentinel-Queries [35], a publicly available
GitHub repository. We used all available Defender queries from this
repository and excluded queries designed for other data sources.
EvALUATION METRICS In order to evaluate these research questions
and assess the effectiveness of our research methods, we first define
the following evaluation metrics. These evaluation metrics have
been previously defined in NL2KQL [30], and we adapt them as
part of our evaluation process as well.

Syntax Score. evaluates whether an LLM-generated KQL query ¢
is syntactically correct: Syntax(q) = 1 if § is syntactically correct,
and 0 otherwise.

Semantic Score. evaluates whether § is semantically correct within
the schema s: Semantic(§) = 1 if ¢ is semantically correct, and 0
otherwise.

Table Score:. Evaluates the proportion of tables referenced in the
G query T(§) which are also references in q, but only if T(q) is a
subset of T(§) otherwise, it’s zero.

T@OT@DI i T(a) € T().
Table(q,q)z{o - HT(@) T)

, otherwise.

Filter Column Score:. Evaluates Jaccard similarity of the set of
columns referenced in filters (F.0;(.)) of ¢ and g, where Jaccard of
anb

two sets is defined as Jaccard(a, b) = |57 |

Filter Literal Score:. Evaluates Jaccard similarity of the set of
literals used in filters of ¢ and gq.

In addition to adapting the metrics defined in NL2KQL, we also
note two more metric measures:
Avg. Latency:. Average end-to-end model inference time per NLQ
(s/query), measured from prompt assembly to final string, including
network/API overhead. For the two-stage architecture, latency is
the maximum per-NLQ end-to-end time across all SLMs plus the
Oracle model’s inference time.

Cost:. Total cost (USD) to process 230 NLQs from the NL2KQL
Defender Evaluation Dataset, accounting for all input and output

Saleha Muzammil, Rahul Reddy, Vishal Kamalakrishnan, Hadi Ahmadi, and Wajih Ul Hassan

tokens per model. SLMs offer several advantages, including en-
hanced data security and lower response latency, but cost efficiency
is one of their most significant benefits. Like LLMs, SLM costs are
determined by input and output token counts, with per-million-
token pricing varying by provider. For this analysis, we report
prices based on Cloudflare’s Workers Al pricing, as highlighted
in [3]. Table 1 presents the cost per 1M tokens for multiple LLMs
and SLMs in USD. The cost gap is substantial: SLMs can offer up
to 7.5x savings on input tokens alone compared to LLMs. When
used effectively for code generation, SLMs can deliver significant
performance at a fraction of traditional LLM costs.

HYPERPARAMETERS To train SLMs using Parameter-Efficient Fine-
Tuning (PEFT) and LoRA, we keep the following hyperparameters
stable for DeepSeek Coder 6.7B Instruct in RQ4: one training epoch,
batch size of 5 per device, learning rate of 0.0002, weight decay of
0.001, maximum gradient norm of 0.3, and warmup ratio of 0.03.
The optimizer used is paged_adamw_32bit. For supervised fine-
tuning, we vary the LoRA parameters and select the combination
minimizing validation loss. Specifically, we test alpha («) values of
2, 4, and 8; rank (r) values of 1, 2, and 4; and dropout values of 0.1
and 0.2.

EMBEDDING MoDEL An embedding model is an ML model that can
be used to convert text into a numerical representation so that it can
be conceptually understood by LLMs or SLMs. The primary embed-
ding model used in the following RQs is Google’s text-embedding-
004 model. The text-embedding-004 provides embedding queries
for $0.025 per 1 million input tokens, and $0.02 per 1 million output
tokens [12]. Furthermore, text-embedding-004 is a lightweight, sim-
plistic embedding model that has performed well across multiple
numerous benchmarks and has strong multilingual and domain-
specific capabilities.

4.1 RQ1: Baseline LLM and SLM Performance

In this research question, we determine the baseline KQL reasoning
capability of LLMs and SLMs without any enhancements. This
helps to understand how LLMs and SLMs independently perform
in generating KQL queries. We perform experiments across four
different LLMs: OpenATI’s GPT-5 and GPT-40, Google Gemini 2.0
Flash, and Microsoft Phi-4, and five different SLMs: Google Gemma-
3-1B-IT, Google Gemma-3-4B-IT, DeepSeek Coder 6.7B Instruct,
Microsoft Phi-4-Mini-Instruct, and Qwen-2.5-7B-Instruct-1M. In
these initial experiments, both LLMs and SLMs are not fed any
contextual information needed to create the KQL query through
the prompts. Rather, we exclusively assess their inference abilities
to produce KQL queries from a simple NLQ. We use the prompt as
outlined in the Zero-Shot Prompting Strategy in Figure 4. These
results are shown in Table 2.

Without schema enhancements, LLMs generate syntactically
correct KQL queries but struggle with semantic accuracy. OpenAI’s
GPT-5, GPT-40 and Google Gemini 2.0 Flash outperform Microsoft
Phi-4 across all metrics, identifying relevant tables more effectively
and achieving lower average latency. In contrast, SLMs perform
poorly on their own: across all five tested, table score and Filter,
remain below 0.1. While SLMs can produce syntactically valid KQL,
they are largely unable to generate semantically correct queries.

EmailEvents

| where Timestamp between(datetime(" 2022-10-05T20:54:33Z2") ..
datetime ("2022-10-05T21:05:122"))

| where ThreatTypes has "Phish"

| where EmailActionPolicy != "Anti-phishing user impersonation"

Listing 2: The KQL query above gives a list of phishing
attempts over email that did not use identity immitation
between 20:54.33 and 21:05.12 on 2022-10-05.

This suggests that even though SLMs have the capacity to learn
the structure of KQL queries, they are not independently effective in
producing useful KQL queries that can be used by security analysts.
These trends are due to either SLM hallucinations of proper table
names, hallucinations of column names, or simply due to referring
to columns that do not belong within the referenced table’s schema.

4.2 RQ2:SLMs with NL2KQL

In this research question, we determine how LLMs and SLMs per-
form within the NL2KQL system. We reimplement NL2KQL’s ar-
chitecture with some substitutions to develop a system that can
be used to generate KQL queries, and first test this on the four
before-mentioned LLMs. NL2KQL selects a certain subset of tables
and their respective schema depending on the embedding of the
natural language query, and its similarity to queries stored in a few-
shot synthetic database, a database that contains realistic, example
NLQ-KQL pairs. Furthermore, we test the NL2KQL configuration
on the five before-mentioned SLMs. The full prompt used in this
system can be referenced within the original NL2KQL paper [30].
These results are shown in Table 2.

From the initial results shown from this table, NL2KQL when
partnered with SLMs improves nearly all measured metrics when
compared to the initial Zero-Shot approach. Likewise, LLMs show
improvement especially in developing semantically correct queries
when partnered with NL2KQL. Although SLMs can produce syn-
tactically correct KQL queries in the Zero-Shot configuration, the
model struggles to identify the correct tables to use given an NLQ.
However, when NL2KQL is utilized to augment the SLM’s knowl-
edge, the SLMs are able to identify proper tables and columns that
are needed to not only produce a syntactically correct query but a
semantically correct query as well. However each model does incur
a greater cost as opposed to utilizing the Zero-Shot approach, and
also incurs more costs with respect to input and output tokens. Fur-
thermore, the average latency per query when utilizing the NL2KQL
approach is higher compared to the Zero-Shot approach; this is
likely due to the higher number of tokens that are given to the
model at inference time. We leave the NL2KQL main Avg. Latency
and Total Cost for NL2KQL, as these values were not provided in
[30].

Because the DeepSeek Coder 6.7B Instruct model in the NL2KQL
approach performs well across all measured metrics while providing
an efficient cost, we choose to build on the DeepSeek Coder 6.7B
Instruct model while using the NL2KQL configuration in order
to increase syntactic and semantic scores of SLM-generated KQL
queries.

Towards Small Language Models for Security Query Generation in SOC Workflows

Model and Configuration Syntax | Semantic | Table | Filter., | Filter);; | Latency | Avg. Cost
GPTs Zero-Shot | 0.9 0.7 0.7 0.404 052 35.711 $0.267
NL2KQL | 0.93 0.861 0283 | 0.114 0.377 53.67 $2.018
CPT-40 Zero-Shot | 0.970 0.274 0452 | 0289 0.542 1.033 $0.136
NL2KQL | 0.961 0.878 0.696 | 0385 0.549 10.008 $2.998
Gemini 2.0 Flash Zero-Shot | 0.973 0.282 0383 | 0.266 0.540 1.095 $0.009
NL2KQL | 0.883 0.812 0716 | 0.487 0.527 2.385 $0.107
Microsoft Phig Zero-Shot | 0.845 0.029 0.126 | 0.061 0.407 2.126 $0.012
NL2KQL | 0.694 0.516 0.604 | 0342 0424 | 11733 $0.127
Microsoft Phid-MiniInstruct | Z€ro-Shot | 0.623 0.007 0.044 | 0026 0.389 1.232 $0.004
NL2KQL | 0.664 0.279 0510 | 0332 0.420 5.398 $0.127
Comma31BIT Zero-Shot | 0.443 0.007 0.0 0.0 0.294 1.373 $0.005
NL2KQL | 0.771 0.332 0321 | 0220 0.253 4.286 $0.084
Gemma.34BIT Zero-Shot | 0.741 0.0 0.004 0.0 0.373 1.793 $0.008
NL2KQL | 0.803 0.446 0629 | 0317 0.495 6.859 $0.127
Zero-Shot | 0.826 0.003 0.026 | 0.009 0.479 0.947 $0.005
Qwen2.5-7B-Instruct-1IM NL2KQL | 0.641 0.413 0419 | 031 0.401 6.258 $0.126
Zero-Shot | 0.81 0.027 0.065 | 0.022 0.45 3328 $0.009
DeepSeek Coder 6.7B Instruct |\ ovor | 0.879 0.779 0757 | 052 0.51 9.455 $0.056

Table 2: Evaluation of LLM and SLM prompting configurations (including NL2KQL) using syntax, semantic, table score, filtering
accuracy, and efficiency metrics. Latency is the average time per NLQ (s/query). Cost is the total USD to run all 230 queries,

based on token prices per million.

EmailEvents
| where Timestamp between (datetime (2022-10-05 20:54:33) ..
datetime (2022-10-05 21:05:12))

| where has_any(ThreatTypes, "Phish", "Phishing")
| project Timestamp, NetworkMessageld, SenderMailFromAddress,
RecipientEmailAddress, Subject, ThreatTypes,

DetectionMethods

Listing 3: This KQL query was generated by DeepSeek
Coder 6.7B Instruct with the NL2KQL configuration for
the same NLQ as in Figure 2. Although similar to the
ground truth, the generated query is syntactically and
semantically incorrect due to incorrect usage of the KQL
keyword: has_any.

4.3 RQ3: Different Prompt Schemes

In this research question, we seek to understand how different
prompting schemes affect NL2KQL with SLMs. In order to revise the
prompt to increase the syntactic and semantic score, it is important
to understand the syntactic and semantic errors that are generated
from using the DeepSeek Coder 6.7B Instruct and the NL2KQL
configuration. For this reason, we employ Microsoft’s KQL code
parser [2] to first determine the types of syntactic errors that are
generated from this scenario. Table 4 in Appendix B lists some of
the most common syntactic errors returned from the KQL queries.

From this table, the most frequent syntax errors were “Unex-
pected:” and “The incomplete fragment is unexpected.”, followed
by missing delimiters such as “Expected: ;” and “Expected:) ”. These
issues commonly arise when the model mixes markdown fragments,
emits partial SQL-like text, or produces malformed parentheses in
operators such as between. By enforcing a single KQL output, con-
straining timestamp expressions, and requiring operators to appear
only in infix form, Alternative Prompt #1 reduces these incomplete
or ill-formed fragments. For this reason, we used the Alternative
Prompt #1 strategy as outlined in Appendix B. Table 3 outlines the
updated results from these tests.

With the revised prompting strategy, there is an increase in
the syntax, semantic, and Filter., scores of KQL queries. After
calculating these metrics, we also analyze the remaining types
of syntax errors that exist after the prompting alteration. These
results are outlined in Table 6. These results indicates that the
number of syntax errors associated decreased. After taking this
approach, we begin looking at alternative prompts that might be
useful to improve the semantic score. In order to further improve
the semantic score, it is imperative to understand the components
where the model is unable to generate correct KQL queries. We
utilize the same KQL code parser to further analyze the semantic
errors that are returned within the KQL code. Table 7 outlines
the list of the most common syntax errors returned from the KQL
queries. From this table, some of the semantic errors that are given
from the model involve improperly referenced columns. This could
be due to either SLM hallucinations or due to referencing columns
that do not belong to a certain table’s schema. In either case, we seek
to improve the semantic score by employing Alternative Prompt
#2 as outlined in Appendix B. These results are shown in Table 3.

Despite specifying that multiple rules to assist the SLM in pro-
ducing semantically correct queries, the SLM performance across
all metrics measured does not appear to improve with this revised
prompting technique. Compared to the first revised prompting
technique, the DeepSeek Coder 6.7B Instruct model performs con-
siderably worse across all metrics. This shows that even when given
a proper table schema, SLMs cannot always verify independently
whether KQL queries are semantically correct. Furthermore, Table 8
outlines that columns and other variables remain undefined even
after specifying the SLM to follow the correct schemas.

4.4 RQ4: LoRA Fine Tuning

In this research question, we also seek to understand how LoRA
Fine-Tuning performs on DeepSeek Coder 6.7B Instruct. Because

Saleha Muzammil, Rahul Reddy, Vishal Kamalakrishnan, Hadi Ahmadi, and Wajih Ul Hassan

Category Model Configuration Syntax Semantic Table Filter o) Filtery; Latency Avg. Cost
Baseline NL2KQL 0.988 0.960 0.822 0.699 0.666 - -
Promptin: NL2KQL + DeepSeek (Original) 0.862 0.71 0.626 0.398 0.496 9.455 $0.055
Stratep iesg NL2KQL + DeepSeek (Revised #1) 0.924 0.753 0.618 0.467 0.456 13.55 $0.2403
& NL2KQL + DeepSeek (Revised #2) 0.869 0.6 0.550 0.424 0.442 14.346 $0.257
DeepSeek (Supervised LoRA Fine-Tuning) 0.911 0.726 0.564 0.452 0.475 13.90 $0.26
Advanced DeepSeek (CoT LoRA Fine-Tuning) 0.909 0.716 0.577 0.47 0.477 13.91 $0.26
Configurations ~ Multi-Agent (General Refinement) 0.83 0.537 0.594 0.463 0.497 18.267 $0.266
Multi-Agent (Schema Context) 0.987 0.906 0.659 0.537 0.562 12.315 $0.213

Table 3: Evaluation of NL2KQL and various model configurations on the Defender Dataset.

DeepSeek Coder 6.7B Instruct has shown improved promise in gen-
erating KQL queries with the help of revised prompting techniques,
a full-fine tuning of model parameter weights may be excessive.
As an alternative, LoRA Fine-Tuning provides an efficient method
of fine-tuning a model by minimizing computational costs needed
to alter model weights. We first perform a hyperparameter search
that minimizes the cross-entropy validation set loss of DeepSeek
Coder 6.7B Instruct. Once we have found the set of parameters
that minimizes the validation set loss, we test this configuration on
the NL2KQL system. As shown in Table 12, the SLM configuration
when a = 8, r = 1, and LoRA dropout = 0.2 produced an validation
set loss of 0.0104. Because this configuration minimized the evalua-
tion loss, we use the fine-tuned model from this configuration to
insert into the NL2KQL system. The results from this configuration
are shown in Table 3 under Advanced Configurations.

The fine-tuned model performs worse in producing syntactically
and semantically correct KQL queries compared to the original
prompting techniques. However, the LoRA Fine-Tuned versions of
DeepSeek Coder 6.7B Instruct, when utilized in the NL2KQL system,
are able to perform slightly better in generating semantically correct
KQL queries. Furthermore, the costs of running the fine-tuned
model, assuming the same input/output token costs as the DeepSeek
Coder 6.7B Instruct, remain roughly the same.

It is possible that due to the nature of reasoning SLMs, supervised
fine-tuning alone may not be sufficient in order to train SLMs. When
fine-tuning SLMs to improve phishing email detection, researchers
found that directly fine-tuning models small reasoning models such
as Llama-3.2-3B-Instruct and Qwen-2.5-1.5B-Instruct on phishing
emails and respective labels yielded poor results when compared to
vanilla prompting strategies [21]. For this reason, we also attempt
a CoT approach, and augment each NLQ-KQL pair with a short
explanation generated by the teacher (Gemini 2.0 Flash) of how the
KQL result was generated. This provides the SLM model the proper
reasoning behind a KQL query result in addition to the actual KQL
answer. As outlined in Table 11, since ¢« = 8, r = 1, and LoRA
dropout = 0.2 minimized validation set loss to 0.0104, we use the
fine-tuned model with these parameters. These results are outlined
in Table 3 under Advanced Configurations. The CoT Fine-Tuning
approach is comparable with the supervised fine-tuning approach
in producing syntactically and semantically correct KQL queries.
However, it does not surpass the different prompting strategies that
have been attempted.

The drop in performance is likely due to limited training exam-
ples, possible inappropriate distillation strategies, or a combination
of both factors. In our fine-tuning setup, only two modules within

the DeepSeek model are targeted for fine-tuning. A further analysis
of which modules should be fine-tuned could affect the overall
results for whether the fine-tuned models produce better results or
not.

4.5 ROQ5: Two-Staged Architecture

Building on the evaluation from RQ3, we propose a two-Staged Ar-
chitecture that combines components of the NL2KQL architecture,
leverages an SLMs instance of DeepSeek Coder 6.7B Instruct, and
uses an oracle LLM, Google Gemini 2.0 Flash, to verify that KQL
queries are syntactically and semantically correct. We introduce the
SLMs instance and set its temperature equal to 1. While SLMs can
perform well at producing syntactically correct queries, leveraging
an oracle LLM model to process the outputs can ensure that KQL
queries that are produced are refined to produce more semanti-
cally correct queries. We choose Google Gemini 2.0 Flash due to its
relatively low cost for input tokens and output tokens while also
yielding syntactically and semantically correct KQL queries.

This solution queries DeepSeek Coder 6.7B Instruct, collects the
result once they have been outputted by the SLM, and allow an
Oracle model to refine the best query as much as possible. To test
the efficacy of the two-staged architecture as a whole, we leveraged
different prompting techniques for the Oracle model, as outlined in
2. This allows us to understand how useful an oracle refinement is
with respect to the SLM that generate KQL queries. In the first oracle
prompting technique, the oracle model chooses the best response
and regenerates a proper KQL query if the best response is not
syntactically or semantically correct according to the Oracle model
itself. In the second oracle prompting technique, the oracle model
chooses the best response and regenerates a proper KQL query
with additional schema context provided from the Schema Refiner
in the NL2KQL architecture. Furthermore, we test the NL2KQL
configuration with respect to the best prompting strategy and assess
how the system performs with respect to the Oracle methods as
well. The results from these varying Oracle prompts is shown in
Table 3.

From the results noted, the revised prompting strategy performs
better than the original NL2KQL prompting strategy with respect to
generating syntactically and semantically correct queries. Further-
more, of the two solution strategies, the two-staged architecture
solution with schema context performs the best in terms of generat-
ing syntactic and semantically correct KQL queries. These metrics
beat the NL2KQL Configuration that uses Gemini 2.0 Flash, while
costing over ten times cheaper to run through the entire evaluation
set. However, it does not beat the NL2KQL (reported) results in

Towards Small Language Models for Security Query Generation in SOC Workflows

terms of syntax and semantic score. When the two-staged architec-
ture solution is told to simply pick the best solution provided by
the LLMs, the two-staged architecture solution produces slightly
better syntactically correct queries than NL2KQL and the revised
prompting solution. However, when we allow the oracle model
to refine the KQL queries generated by the SLMs, the two-staged
architecture solution produces near perfect syntactically correct
queries but mediocre semantically correct queries.

5 Discussion & Limitations

Practical Implications for SOC Deployment. Our results in-
dicate that SLMs can support day-to-day NLQ—KQL authoring
when paired with lightweight scaffolding. Zero-shot SLMs provide
fast, low-cost drafts but require schema context to avoid table and
column hallucinations. Few-shot exemplars further reduce revision
effort, and error-aware tips eliminate recurring syntactic mistakes
with minimal token overhead. The two-staged architecture is oper-
ationally attractive: one DeepSeek Coder 6.7B Instruct generator
keeps latency bounded, while a low-cost Oracle (Gemini 2.0 Flash)
selects and refines a single query under a code-only policy and a
validator. For SOCs, this suggests a practical pattern: local or private
SLMs for generation, a narrow LLM for judgment and refinement,
and strict validation before execution.

Generalizability to Languages. The framework extends beyond
SQL to EQL[10] and SPL[29] with straightforward changes. We
treat EQL indexes/index patterns and SPL index—sourcetype pairs or
CIM datamodels as “tables”; build schemas from Elasticsearch map-
pings (typed fields, keyword variants, ECS when available) or from
Splunk knowledge objects and tstats introspection; then retrieve
top-t sources and top-v fields. Few-shot selection is unchanged,;
examples are serialized in native syntax (EQL event/sequence with
where, by, with maxspan; SPL search, where, stats, or tstats when
a datamodel applies). Prompts add guardrails: EQL uses canonical
timestamp comparisons and restricts fields to chosen indexes; SPL
specifies earliest/latest in the search command, prefers tstats
for datamodel fields, and avoids table or timechart unless requested.
Validators swap accordingly: EQL uses a dry-run parse plus field-
existence and legal sequence/maxspan/by checks; SPL uses the parser
with per-stage field checks and tstats enforcement. Metrics adapt
mechanically: table scores — index or index—sourcetype scores;
filter scores = Jaccard over fields/literals in where or stats by, pe-
nalizing out-of-schema fields; EQL sequences must have correct
stage order. To manage tokens, we cap context to top-t sources and
top-v fields and include only relevant operator cheat sheets (e.g.,
EQL sequence syntax; SPL stats/tstats).

6 Conclusion

We present the first systematic study of SLMs for NLQ-to-KQL trans-
lation, introducing prompting enhancements, LoRA fine-tuning
with rationale distillation, and a two-stage SLM-Oracle architec-
ture. Our approach achieves near-LLM accuracy at up to 15x lower
cost, demonstrating SLMs as a practical, scalable alternative for
enterprise security analytics.

References

i

=
&N

[15

[16

=
]

(18]

(19]

[20

[21

[22]

[23]

[24

[25]

[27

2023. NL2KQL Evaluation Metrics and Benchmark. https://github.com/microsoft/
NL2KQL. Accessed: 2025-09-20.

2024. Kusto Query Language (KQL). https://learn.microsoft.com/azure/data-
explorer/kusto/query/ Accessed: 2025-09-20.

2025. https://blog.cloudflare.com/workers-ai-bigger-better-faster/

Bushra A Alahmadi, Louise Axon, and Ivan Martinovic. 2022. 99% False Positives:
A Qualitative Study of SOC Analysts’ Perspectives on Security Alarms. 31st
USENIX Security Symposium (USENIX Security 22), 2783-2800.

Christopher Baik, Hosagrahar V Jagadish, and Yunyao Li. 2019. Bridging the
semantic gap with SQL query logs in natural language interfaces to databases.
In IEEE 35th International Conference on Data Engineering (ICDE). 374-385.
Stefan Bargan. 2024. Introduction to KQL for SOC analysts. https:
//medium.com/cyberscribers-exploring-cybersecurity/introduction-to-kgql-for-
soc-analysts-9308f46d4597

Peter Belcak, Greg Heinrich, Shihze Diao, Yonggan Fu, Xin Dong, Saurav Mu-
ralidharan, Yingyan Celine Lin, and Pavlo Molchanov. 2025. Small Language
Models are the Future of Agentic AL https://arxiv.org/pdf/2506.02153

Gelei Deng, Yi Liu, Victor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu,
Tianwei Zhang, Yang Liu, Martin Pinzger, and Stefan Rass. 2024. {PentestGPT}:
Evaluating and Harnessing Large Language Models for Automated Penetration
Testing. In 33rd USENIX Security Symposium (USENIX Security 24). 847-864.
Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023.
QLORA: Efficient Finetuning of Quantized LLMs. Advances in Neural Information
Processing Systems (NeurIPS) 36 (2023), 10088-10115.

Elastic. 2018. Elastic Query Language Documentation. https://www.elastic.co/
docs/explore-analyze/query-filter/languages/eql Accessed: 2025-10-05.
Google. 2023. google-generativeai. Python Package Index (PyPI). https://pypi.
org/project/google-generativeai/ Accessed: 2025-10-06.

Google. 2025. Gemini API Embeddings. https://ai.google.dev/gemini-api/docs/
embeddings Accessed 2025-09-20.

Mohammed Hassanin and Nour Moustafa. 2024. A Comprehensive Overview of
Large Language Models (LLMs) for Cyber Defences: Opportunities and Direc-
tions. https://arxiv.org/abs/2405.14487

Zijin Hong, Zheng Yuan, Hao Chen, Qinggang Zhang, Feiran Huang, and Xiao
Huang. 2024. Knowledge-to-SQL: Enhancing SQL Generation with Data Expert
LLM. In Findings of the Association for Computational Linguistics (ACL). 10997~
11008. doi:10.18653/v1/2024.findings-acl.653

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, Weizhu Chen, et al. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. International Conference on Learning Representations (ICLR) 1,
2 (2022), 3.

Hugging Face. 2016. Hugging Face: The AI Community Building the Future.
https://huggingface.co Accessed: 2025-09-20.

Liming Jiang. 2024. Detecting Scams Using Large Language Models.
//arxiv.org/abs/2402.03147

Yuxuan Jiang, Chaoyun Zhang, Shilin He, Zhihao Yang, Minghua Ma, Si Qin,
Yu Kang, Yingnong Dang, Saravan Rajmohan, Qingwei Lin, et al. 2024. Xpert:
Empowering Incident Management with Query Recommendations via Large
Language Models. In Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering. 1-13. doi:10.1145/3597503.3639081

Sarah Lean. 2025. What is Kusto query language? https://dev.to/techielass/what-
is-kusto-query-language-2k2n

Fei Li and Hosagrahar V Jagadish. 2014. NaLIR: An Interactive Natural Language
Interface for Querying Relational Databases. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data. 709-712. doi:10.1145/
2588555.2594519

Zijie Lin, Zikang Liu, and Hanbo Fan. 2025. Improving Phishing Email Detection
Performance of Small Large Language Models. https://arxiv.org/abs/2505.00034
Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. 2023.
SELF-REFINE: Iterative Refinement with Self-Feedback. Advances in Neural
Information Processing Systems (NeurIPS) 36 (2023), 46534-46594.

Marwan Omar and Stavros Shiaeles. 2023. VulDetect: A novel technique for
detecting software vulnerabilities using Language Models. In IEEE International
Conference on Cyber Security and Resilience (CSR). IEEE, 105-110. doi:10.1109/
csr57506.2023.10224924

Adrien Payong. 2024. Review: Fine-Tuned Language Models are Zero-Shot
Learners. https://blog.paperspace.com/instruction-tuning/

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a Theory of
Natural Language Interfaces to Databases. In Proceedings of the 8th International
Conference on Intelligent User Interfaces. 149-157. doi:10.1145/604045.604120
Elvis Saravia. 2024. Prompt Engineering Guide. https://www.promptingguide.ai
Accessed: 2025-10-05.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural

https:

https://github.com/microsoft/NL2KQL
https://github.com/microsoft/NL2KQL
https://learn.microsoft.com/azure/data-explorer/kusto/query/
https://learn.microsoft.com/azure/data-explorer/kusto/query/
https://blog.cloudflare.com/workers-ai-bigger-better-faster/
https://medium.com/cyberscribers-exploring-cybersecurity/introduction-to-kql-for-soc-analysts-9308f46d4597
https://medium.com/cyberscribers-exploring-cybersecurity/introduction-to-kql-for-soc-analysts-9308f46d4597
https://medium.com/cyberscribers-exploring-cybersecurity/introduction-to-kql-for-soc-analysts-9308f46d4597
https://arxiv.org/pdf/2506.02153
https://www.elastic.co/docs/explore-analyze/query-filter/languages/eql
https://www.elastic.co/docs/explore-analyze/query-filter/languages/eql
https://pypi.org/project/google-generativeai/
https://pypi.org/project/google-generativeai/
https://ai.google.dev/gemini-api/docs/embeddings
https://ai.google.dev/gemini-api/docs/embeddings
https://arxiv.org/abs/2405.14487
https://doi.org/10.18653/v1/2024.findings-acl.653
https://huggingface.co
https://arxiv.org/abs/2402.03147
https://arxiv.org/abs/2402.03147
https://doi.org/10.1145/3597503.3639081
https://dev.to/techielass/what-is-kusto-query-language-2k2n
https://dev.to/techielass/what-is-kusto-query-language-2k2n
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.1145/2588555.2594519
https://arxiv.org/abs/2505.00034
https://doi.org/10.1109/csr57506.2023.10224924
https://doi.org/10.1109/csr57506.2023.10224924
https://blog.paperspace.com/instruction-tuning/
https://doi.org/10.1145/604045.604120
https://www.promptingguide.ai

Saleha Muzammil, Rahul Reddy, Vishal Kamalakrishnan, Hadi Ahmadi, and Wajih Ul Hassan

Zero-Shot Prompting

You are a programmer using the Kusto Query Language with Microsoft Defender.
Generate a KQL query that answers the following request:

{NLQ}

Return only the KQL code without any explanation.

Figure 4: Zero-Shot prompt used to evaluate how SLMs gen-
erate KQL queries

Language Processing. Association for Computational Linguistics. doi:10.18653/
v1/2021.emnlp-main.779

[28] SigmaHQ. 2017. Main Sigma Rule Repository. GitHub. https://github.com/
SigmaHQ/sigma Accessed: 2025-10-06.

[29] Splunk Inc. 2024. Splunk Enterprise Search Manual. https://docs.splunk.com/
Documentation/Splunk/9.4.2/Search/Aboutthesearchlanguage Version 9.4.2.
Accessed: 2025-10-06.

[30] Xinye Tang, Amir H. Abdi, Jeremias Eichelbaum, Mahan Das, Alex Klein, Ni-
hal Irmak Pakis, William Blum, Daniel L Mace, Tanvi Raja, Namrata Padman-
abhan, and et al. 2025. NL2KQL: From Natural Language to Kusto Query.
https://arxiv.org/abs/2404.02933

[31] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv preprint arXiv:2203.11171(2022).

[32] Canwen Xu, Yichong Xu, Shuohang Wang, Yang Liu, Chenguang Zhu, and Julian
McAuley. 2024. Small Models are Valuable Plug-ins for Large Language Models.
In Findings of the Association for Computational Linguistics (ACL). Association
for Computational Linguistics, 283-294. doi:10.18653/v1/2024.findings-acl.18

[33] Xiaohan Xu, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu,
Dacheng Tao, and Tianyi Zhou. 2024. A Survey of Knowledge Distillation of
Large Language Models. https://arxiv.org/pdf/2402.13116

[34] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. Judg-
ing LLM-as-a-Judge with MT-Bench and Chatbot Arena. Advances in Neural
Information Processing Systems (NeurIPS) 36 (2023), 46595-46623.

[35] Matthew Zorich. 2021. Sentinel-Queries: Collection of KQL Queries. GitHub.
https://github.com/reprise99/Sentinel-Queries Accessed: 2025-10-06.

Appendix
A Zero-Shot Prompt

The Zero-Shot Prompt in Figure 4 provides a brief context for
the SLM to understand that the focus language is KQL, and asks
the SLM to produce a KQL query based on a NLQ. No additional
context is given in this prompt, as this is meant to assess the SLM’s
understanding of KQL at a baseline level. This prompt is related to
the results outlined from RQ1.

B Alternative Prompts

We introduce two revised prompt templates targeting common
errors we found using Microsoft’s KQL Parser; see Figure 5. Alter-
native Prompt 1 enforces strict schema discipline and prevents the
model from generating undefined Defender-style fields. It speci-
fies the correct infix usage of some operators such as "between’,
"has_any", and "contains". Alternative Prompt 2 builds on this by
requiring the model to choose a valid starting table and to ref-
erence only those columns defined in that table (or in explicitly
joined tables). This complements the NL2KQL setup described in
Section 3.3.

Alternative Prompting Methods

Alternative Prompt #1:
You are a cybersecurity expert generating syntactically valid KQL for Microsoft
Defender/Sentinel/USX. Return only a single KQL query without any explanation.

Use the following structures to describe a timestamp: between(datetime(...) ..
datetime(...)) or Timestamp < ago(7d)

Use contains, has, has_any, has_all, in, in~, and between operators ONLY
in infix form. For example: Column has_any ("a","b"), Timestamp between
(datetime(...) .. datetime(...)).

Never invent new tables, columns, or values. Use only tables/columns/data
types in:

{SCHEMA}

Use only values from NLQ or:
{VALUES}

Examples:

{EXAMPLES}

{NLQ}

Alternative Prompt #2:
You are a cybersecurity expert generating syntactically valid KQL for Microsoft
Defender/Sentinel/USX. Return only a single KQL query inside a kusto code block
without any explanation.

Use ONLY the following structures to describe timestamps: Column between
(datetime(...) .. datetime(...)) or Timestamp < ago(7d).

Use contains, has, has_any, has_all, in, in”, and between operators ONLY
in infix form. For example: Column has_any ("a","b"), Timestamp between

(datetime(...) .. datetime(...)).

Never invent new tables, columns, or values. Use only tables/columns/data
types explicitly listed in:

{SCHEMA}

If the NLQ mentions a field not present in the schema, ignore that part of
the request.

Negation must use not(. ..). Do NOT use the "!" operator anywhere.

The query must start with a table name (no leading "|") and follow a single
pipeline structure.

Use only values from the NLQ or:
{VALUES}

Examples:

{EXAMPLES}

{NLQ}

Figure 5: Alternative prompting templates used to reduce
common KQL errors.

C Table References

Table 4 outputs the most common syntax errors that were asso-
ciated with the DeepSeek NL2KQL Configuration (RQ2). In total,
there were 427 syntax errors from the LLM-generated KQL queries
across five iterations. The most prevalent error type was “Unex-
pected: ”, followed by “The incomplete fragment is unexpected”.
While the third most common error, “Expected: ;” , is not particu-
larly useful in fixing the KQL queries due to its generic nature, the

https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://github.com/SigmaHQ/sigma
https://github.com/SigmaHQ/sigma
https://docs.splunk.com/Documentation/Splunk/9.4.2/Search/Aboutthesearchlanguage
https://docs.splunk.com/Documentation/Splunk/9.4.2/Search/Aboutthesearchlanguage
https://arxiv.org/abs/2404.02933
https://doi.org/10.18653/v1/2024.findings-acl.18
https://arxiv.org/pdf/2402.13116
https://github.com/reprise99/Sentinel-Queries

Towards Small Language Models for Security Query Generation in SOC Workflows

Syntax Error Percentage of Errors

Unexpected: 28.6%

The incomplete fragment is unexpected. 24.6%
Expected: ; 13.3%

Expected:) 7.5%

Expected: (4.9%

Table 4: List of most common syntax errors associated with
the DeepSeek NL2KQL Configuration over five iterations
(Total Syntax Error Count: 427)

Semantic Error Percentage of Errors

Unexpected: * 14.2%

The incomplete fragment is unexpected. 12.2%
Expected: ; 6.62%

Expected:) 3.72%

A value of type timespan expected. 2.67%

Table 5: List of most common semantic errors associated with
the DeepSeek NL2KQL Configuration over five iterations
(Total Semantic Error Count: 860)

Syntax Error Percentage of Errors

Expected: ; 23.3%

The incomplete fragment is unexpected. 20.0%
Missing: " 11.0%

Unexpected: \ 10.5%

Missing expression 9.0%

Table 6: List of most common syntax errors associated with
the revised prompting strategy. (Total Syntax Error Count:
210)

fourth error, “Expected:)” (7.5%), suggests issues with improper
parenthesis matching in function calls or logical expressions.

Table 5 presents the most common semantic errors from the same
configuration. With 860 total errors, the semantic errors reveal more
specific issues with the model’s understanding of KQL syntax and
data types. The most common semantic error, “A value of type
timespan expected”, indicates difficulties in constructing proper
temporal expressions. Additionally, errors related to join conditions
suggest the model struggles with the proper syntax for table joins
in KQL. These error patterns inform the formulation of the first
prompting strategy in RQ3.

Table 6 shows the most common syntax errors that were found
after the changes in prompting in the DeepSeek NL2KQL Configu-
ration. The number of syntax errors significantly decreased with
the new prompting strategy.

Table 7 outlines the most common semantic errors that were
found after the changes in prompting in the DeepSeek NL2KQL
Configuration. Although only the top 5 common semantic errors are
highlighted here, most of semantic errors involved missing column
names, and incomplete query fragments. Notable among the errors
are cases where column names do not refer to known columns

Semantic Error Percentage of Errors

Expected: ; 6.2%
Column name expected. 5.4%
The incomplete fragment is unexpected. 5.3%
A value of type string or dynamic expected. 3.5%
The name °FileName’ does not refer to any 3.4%

known column, table, variable or function.

Table 7: List of most common semantic errors associated with
the revised prompting strategy. (Total Semantic Error Count:
793)

Semantic Error Percentage of Errors

Column name expected. 8.6%
Expected: ; 7.7%
The incomplete fragment is unexpected. 5.1%
Expected: , 4.8%
The name FileName’ does not refer to any 23%

known column, table, variable or function.

Table 8: List of most common semantic errors associated with
the second revised prompting strategy. (Total Semantic Error
Count over five iterations: 1185)

in the specified tables (3.4%), likely due to SLM hallucinations or
misguided assumptions about which columns belong to certain
tables.

Table 8 outlines the most common semantic errors that were
found after a second change prompting in the DeepSeek NL2KQL
Configuration. With the second revised prompting technique, the
number of semantic errors increase. This shows that the second
revised prompting strategy did not assist in reducing the number
of semantic errors detected.

C.1 RQ6: Generalization

After establishing a two-staged architecture and assessing perfor-
mance on NL2KQL’s evaluation dataset, we also seek to under-
stand how this two-staged architecture performs on other evalua-
tion datasets. In order to test how this system performs on other
schemas, we utilize a different dataset from the original evaluation
dataset released from NL2KQL. Therefore, we use the Sentinel-
Queries Dataset [35] for evaluation, which consists of 83 open-
source GitHub KQL queries. We use the same prompting strategy
utilized in the Two-Staged Architecture Solution w/Schema Con-
text.

When given a new dataset, the two-staged architecture per-
forms well in developing syntactically and semantically correct
KQL queries. However, the architecture struggles significantly with
column filtering (0.267), and especially literal filtering (0.1). This
shows that although the two-staged architecture shows strong
promise in producing syntactically and semantically correct KQL
queries, it may produce misleading results due to incorrect table
selection and poor filtering accuracy.

Saleha Muzammil, Rahul Reddy, Vishal Kamalakrishnan, Hadi Ahmadi, and Wajih Ul Hassan

Configuration Syntax Semantic Table Filter., Filtery; Lat. AC.

(W/NL2KQL)

Two-Staged Architec- 0.964 0.831 0.429 0.267 0.1 12.37 $0.078
ture Solution (Schema

Context)

Table 9: Evaluation of NL2KQL and multiple SLM configura-
tions on the Sentinel-Queries Dataset. Lat. stands for Latency;
AC. stands for Average Cost

=— Syntax-::+ Semantic e Table Filterzo === Filter

1.0

Metric Score
o 2o 2 o ©
w [=2] ~ o w

SLMs

Figure 6: Number of SLMs (1-4) vs. Metric Scores

—— Syntax---- Semantic--- Table Filterco — - Filter;
1.0
p 0.9 T
g e
3 asd T e
wn
€07 e,
B | m—————————
=00 T
051 TTesmimTrTee
0.2 0.7 1.2 17
Temperature

Figure 7: Temperature vs. Metric Scores

D RQ7: Hyperparameter Search Studies

In the following section, we vary different components of the two-
staged architecture and assess how this affects the overall results
of the system. The three main areas of testing include the number
of SLMs that are used within the two-staged architecture system,
the different temperature values used within the two-staged ar-
chitecture system, and the number of tables fed into the SLM and
Oracle LLM prompt.

Number of SLMs. The number of SLMs that are utilized in the
two-staged architecture solution can potentially introduce a trade-
off between metric scores and latency. A greater number of SLMs
utilized in the system often means that the system will likely incur
higher latency. However, the greater the number of SLMs that are
utilized in the two-staged architecture solution, the more plausible
responses are generated. In this hyperparameter search study, we
determine what effect the number of SLMs utilized has on responses
while keeping other components (i.e. Temperature) consistent. Fig-
ure 6 outlines the metric scores as the number of SLMs utilized in
the system increases. Increasing the number of SLMs utilized in the
system reduces all metric scores in the entire two-staged system.

When the number of SLMs utilized in the two-staged system is one,
the syntax score is 0.983, the semantic score is 0.896, the table score
is 0.67, the Filter.,; score is 0.536, and the Filter;;; score is 0.552.
However, when the number of SLMs utilized in the two-staged
system increases to two, the syntax score stays the same, but the
semantic score is reduced to 0.872, the table score is reduced to
0.66, the Filter.,; score is reduced to 0.522, and the Filter;;; score
is reduced to 0.542. This reduction trend continues as the number
of SLMs utilized in the system continue to increase as shown by
the figure. Therefore, the best number of SLMs to utilize in the
multi-stage system is one.

Alpha | Rank | LoRA Dropout | Validation Loss
8 1 0.2 0.010477
8 1 0.1 0.010488
8 2 0.2 0.010500
8 2 0.1 0.010526
8 4 0.2 0.010882
8 4 0.1 0.010882
4 2 0.1 0.017084
4 2 0.2 0.018105
4 1 0.2 0.018485
4 1 0.1 0.018823
4 4 0.1 0.019539
4 4 0.2 0.019622
2 2 0.1 0.026694
2 2 0.2 0.026819
2 1 0.1 0.029698
2 4 0.1 0.029962
2 4 0.2 0.030118
2 1 0.2 0.030627

Table 12: Hyperparameter Search with Validation Losses per
combination (Supervised Fine-Tuning)

Different Temperature Values. We tested the two-staged archi-
tecture system under four different temperature values: 0.2, 0.7, 1.2,
1.7. These temperature values are meant to represent low, moderate,
and high temperature values respectively. When configured within
SLMs, low temperatures provide more deterministic code while
higher temperatures introduce more randomness and creativity in
token generation. In this hyperparameter search study, we study
how varying the temperature of the SLMs can affect the quality
of KQL queries that are produced from the proposed system. Fig-
ure 7 outlines the metric scores as the temperature utilized in the
SLM within the two-staged system varies. When the temperature
is set to 0.2, the syntax score is 0.99, the semantic score is 0.911,
the table score is 0.665, the Filter.,; score is 0.54, and the Filter;;;
score is 0.556. When the temperature is set to 0.7, the syntax score
is reduced to 0.981, the semantic score is reduced to 0.892, the table
score is reduced to 0.655, the Filter.,; score is reduced to 0.537,
and the Filtery;, score is reduced to 0.548. When the temperature
is set to 1.2, the syntax score is 0.962, the semantic score is 0.838,
the table score is 0.641, the Filter.,; score is 0.5, and the Filter;;;
score is 0.531. Lastly, when the temperature is set to 1.7, the syntax
score is 0.93, the semantic score is 0.794, the table score is 0.597,
the Filter.,; score is 0.465, and the Filter;;; score is 0.511. There
does appear to be a clear relationship between temperature and
performance, with all metric scores decreasing as the temperature
increases.

Towards Small Language Models for Security Query Generation in SOC Workflows

Category Model Configuration Syntax Semantic Table Filter o) Filtery;¢ Latency Avg. Cost
Multi-Agent (Top 1) 0.983 0.849 0.584 0.515 0.544 10.175 $0.15
MulticAgent Multi-Agent (Top 3) 0.983 0.887 0.637 0523 0.55 11361 $0.183
(TE ‘t A a‘ﬁ’e‘s) Multi-Agent (Top 5) 0.987 0.906 0.659 0537 0562 12315 $0.213
P Multi-Agent (Top 7) 0.989 0.886 0.68 0.545 0.552 13342 $0.244
Multi-Agent (Top 9) 0.978 0.877 0.703 0.55 0.561 14.256 $0.274
Table 10: Evaluation of Multi-Agent System with varying numbers of tables.

Algha Ralnk LoRA (?zmp(’“t Vah(‘)igtllo(;’;;“oss to determine how varying the number of tables given to the SLM
3 1 01 0010489 and Oracle LLM affects other metrics. These results are shown in
8 2 0.2 0.010507 Table 10.

z i 8'; g'giggég The syntax scores remain relatively stable across varying num-
3 " 01 0010871 bers of tables supplied, ranging from 0.978 to 0.989. The semantic
4 2 0.1 0.017208 score generally increases as the number of tables supplied increases,
4 2 0.2 0.018153 reaching a peak of 0.906 with five tables before slightly declining
4 1 0.2 0.018505 . .

Y 1 o1 O.O1E738 with seven and nine tables. The table score shows a clear upward
4 4 0.1 0.019508 trend, increasing from 0.584 with one table to 0.703 with nine tables.
4 4 0.2 0.019609 However, this improvement comes at a cost: both latency and aver-
2 2 o] 0.020689 ti bstantially, with lat ing from 10.175
5 5 03 0026853 age cost increase substantially, with latency growing from 10.1

2 1 01 0.029772 seconds (1 table) to 14.256 seconds (9 tables), and cost increasing
2 4 0.1 0.029944 from $0.15 to $0.274. To reach a good balance between cost, effi-
g ‘1‘ 8'2 g‘ggg;g ciency, and metrics, we choose our ideal number of tables to supply

Table 11: Hyperparameter Search with Validation Losses per
combination (CoT Fine-Tuning)

Different Number of Tables. We tested the two-staged architec-
ture when it receives varying numbers of top tables ranging from
1 to 9 tables. The goal in providing fewer tables is to reduce total
costs and latency in utilizing the system. However, we also seek

to the system as five, which achieves the highest semantic score
(0.906) while maintaining reasonable latency (12.315 seconds) and
cost ($0.213).

Different Alpha and Rank Values. In Table 12 and Table 11, we
highlight the validation losses obtained from each combination of
parameters while training DeepSeek Coder 6.7B Instruct on NLQ-
KQL pairs. Table 12 highlights the validation loss in the Supervised
Fine-Tuning case, while Table 11 highlights the validation loss in
the CoT Fine-Tuning case.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Statement
	3.2 Zero-Shot Prompting
	3.3 NL2KQL-Inspired Prompting
	3.4 LoRA Fine-Tuning with LLM Distillation
	3.5 Two-Staged Architecture

	4 Evaluation
	4.1 RQ1: Baseline LLM and SLM Performance
	4.2 RQ2: SLMs with NL2KQL
	4.3 RQ3: Different Prompt Schemes
	4.4 RQ4: LoRA Fine Tuning
	4.5 RQ5: Two-Staged Architecture

	5 Discussion & Limitations
	6 Conclusion
	References
	A Zero-Shot Prompt
	B Alternative Prompts
	C Table References
	C.1 RQ6: Generalization

	D RQ7: Hyperparameter Search Studies

