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Abstract—Detecting Advanced Persistent Threats (APTs) in
large enterprise networks with conventional Network Intrusion
Detection Systems (NIDS) is challenging due to the stealthy,
multi-stage, and long-running nature of APTs. This paper intro-
duces NETGUARDIAN, a novel NIDS utilizing a comprehensive
methodology to correlate anomalies across APT stages. By merg-
ing real traffic with simulated APT scenarios, NETGUARDIAN
creates a detailed training dataset for enhanced anomaly detec-
tion. NETGUARDIAN implements custom models for each APT
stage, extracting specific traffic features, such as periodicity
and failed connections, to identify anomalies. These anomalies
are then correlated to reconstruct attack paths. Our system
leverages these paths to assign threat scores based on intercon-
nected anomalies matching known APT progression, effectively
prioritizing suspicious paths. Evaluation on a large dataset of
enterprise network traffic merged with simulated APTs along
with the DARPA OpTC dataset shows that NETGUARDIAN
detects various APT stages with high accuracy and low false
positives, outperforming state-of-the-art (SOTA) NIDS.

Index Terms—NIDS, APT attacks, causal analytics

I. INTRODUCTION

Advanced Persistent Threats (APTs) stand at the forefront
of cybersecurity challenges for enterprise infrastructures in
the era of digital transformation, as evidenced by the cyber
attack against Russian Scientific Computing Center [1] and the
SolarWinds supply chain attack [2]. APTs navigate through
four pivotal stages - Initial Intrusion, Establish Foothold,
Lateral Movement, and Data Exfiltration - each leaving distinct
footprints in network logs which serve as valuable indicators
for timely detection and mitigation in enterprise environments.

To tackle APTs, Network Intrusion Detection Systems
(NIDS) act as critical components within organizational cy-
bersecurity infrastructures. SOTA NIDS continuously parse
through network traffic logs, generating threat alerts upon
identifying patterns and signatures indicative of APT attacks.
Security analysts rely heavily on these alerts, scrutinizing them
to ascertain their validity, identify true attacks, and subse-
quently initiate the necessary incident response and attack
remediation processes.

However, despite their critical role, current NIDS [3], [4]
face several significant limitations that hinder their effective-
ness in battling the sophisticated strategies employed by APTs.
First, relying mainly on signature-based detection, these sys-
tems find it difficult to identify APTs that consistently change
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their tactics and use unique malware. Additionally, the narrow
focus of current NIDS on singular events or individual APT
attack stages significantly undermines their detection efficacy.
The architecture and operation of these systems lack the
capability to consider the causal relationships and progression
across the multiple stages of APTs, which is crucial for com-
prehensive threat identification and understanding. The failure
to account for the interconnectedness of APT stages results in
a fragmented view of ongoing threats, leading to a high volume
of false alerts or “alert fatigue” [5]. This condition not only
overwhelms security analysts but also leads to a slow response
to genuine, often sophisticated, threats embedded within the
multitude of false positives. This scenario underscores the need
for a threat alert triage mechanism capable of prioritizing alerts
based on their severity and potential impact to facilitate more
effective and timely responses by analysts.

Moreover, the lack of holistic attack reconstruction capabil-
ity in conventional NIDS compounds the challenges faced by
security professionals. Without a mechanism that cohesively
correlates information across different APT stages, these sys-
tems fall short of providing a comprehensive understanding of
the threat landscape. This deficiency hinders accurate attack
reconstruction and impairs the subsequent analysis.

Finally, lack of scalability emerges as a third significant
limitation [3], [4]. With the exponential growth in network
traffic and the complexity of modern network architectures,
traditional NIDS struggle to efficiently and accurately process
and analyze the voluminous data, inevitably impacting their
performance and reliability in detecting and responding to
threats in real-time. This scalability issue is further exacerbated
during peak traffic periods, limiting the system’s ability to
provide timely and accurate threat detection and analysis.

Addressing these challenges, we design NETGUARDIAN,
an effective NIDS designed for optimal performance in large-
scale network environments. We introduce the notion of Multi-
stage Causal Analytics, which enables the system to effectively
correlate different APT stages from network logs and generate
causal paths between those stages. We demonstrate that these
causal paths enhance our system’s detection accuracy by
providing a more comprehensive view of the unfolding threat
landscape. NETGUARDIAN consists of four modules, which
we describe below.

First, NETGUARDIAN uses the Traffic Data Merging mod-
ule for creating a realistic training environment. It merges au-
thentic network flows with simulated APT scenarios, crafting



a dataset that reflects the complexity of genuine network activ-
ities while embedding simulated attack patterns. The merging
ensures that the learning model is exposed to and learns from
a traffic environment where normal and malicious patterns
coexist, capturing the intricacies of genuine network activities
while integrating crafted attack patterns. This comprehensive
training dataset provides a realistic traffic pattern exposure,
entwining normal activities with malicious behaviors. Then
NETGUARDIAN leverages the Historical Information Extractor
module to analyze historical network data and distinguish
between routine and potentially threatening activities, estab-
lishing valuable behavior baselines. This analysis adds depth
and context to real-time data, enhancing system accuracy.

During runtime, the APT Stage Detector module actively
extracts features indicative of anomalies during the critical
stages of APTs. This module is composed of four detectors,
each optimized for identifying a specific stage of an APT.
To build these detectors, we leverage a novel adaption of
SOTA methods [6]–[9]. First, the Phishing-Email Detector
leverages machine learning techniques trained on meticulously
preprocessed data from reputable datasets. With a discerning
feature set extracted from each email and a trained SVM
model, it efficiently identifies phishing attempts, flagging the
originating IPs of these malicious emails as initial compromise
indicators. Next, the Command and Control (C2) Communi-
cation Detector relies on scrutinizing periodic connections and
DNS resolutions. It precisely identifies potential C2 communi-
cations by analyzing timestamp intervals and data sizes within
identified IP pairs, alongside differentiating the nuances of
DNS resolutions between benign and C2 traffic. Subsequently,
the Network-Scanning Detector identifies lateral movements
within the network by focusing on both vertical and horizontal
scanning behaviors. Through a detailed analysis of failed
connections on various ports and calculated anomaly scores, it
meticulously flags internal IPs involved in anomalous scanning
activities, providing insights into potential lateral movements
within the network. Lastly, the Data-Leakage Detector em-
ploys a multifaceted approach by calculating and analyzing
factors related to the volume of outbound traffic, the number
of connections to external networks, and domains accessed.
With a dynamic anomaly scoring system, it efficiently flags
nodes with unusual traffic patterns as potential data leakage
points, warranting immediate attention.

Once the individual stage detection is done,
NETGUARDIAN’s APT Causal Path Reconstructor module
creates causal paths encapsulating network activities and
sequences of anomalies, offering a coherent view of APT
progression. This causal path not only aids in the detection
process but also facilitates alert triaging and expedites the
investigative process by providing a clear overview of the
attack’s progression. After that, we score and rank causal
paths generated in the previous step such that paths related to
true APT attacks are ranked higher than false alarms.

We evaluated NETGUARDIAN, showcasing its advanced
APT detection capabilities compared to SOTA NIDS AR-
GUS [10] and PIKACHU [4]. Our assessment utilized two

datasets: anonymized campus traffic and DARPA OpTC [11].
In comparison with these SOTA NIDS, NETGUARDIAN ex-
hibited significantly lower false positive and false negative
rates, reinforcing its efficacy in real-world scenarios. Remark-
ably, our system has a data processing rate of 1.35× and
over 170× faster than ARGUS and PIKACHU, respectively,
when analyzing extensive network logs. A distinctive feature
of NETGUARDIAN lies in its consistent high performmance
across varying network sizes, which we demonstrated by
expanding background traffic from one to eight days without
affecting its performance. This resilience stems from our
system’s reliance on attack features and causal dependency for
stage detection and path reconstruction, which remain effective
regardless of the network’s scale.

Moreover, NETGUARDIAN’s ability to discern key stages
of APT attacks offers a substantial benefit. Its stage detection
models streamline the typically demanding process of stage
identification, reducing the need for extensive domain exper-
tise. Our system successfully identified all stages in various
APT scenarios, as detailed in the case study of DARPA
OpTC 0923 attack. This level of interpretability greatly assists
security analysts in comprehending and responding to threats.

The main contributions of our paper are as follows.
– The development and validation of a novel data merging

technique, enabling the embedding of simulated APT sce-
narios within genuine network data.

– The design and implementation of SOTA APT stage detec-
tion models, utilizing a harmonized approach of statistical,
historical, and graph analytics.

– The introduction of a sophisticated attack causal path recon-
struction algorithm, adeptly analyzing candidate sequences,
and proficiently illuminating the interconnected progression
of APTs.

– A robust evaluation of NETGUARDIAN, demonstrating its
capability to reconstruct multi-stage cyber-attacks with pre-
cision within expansive enterprise networks.

II. BACKGROUND

In this section, we first discuss the limitations of Host In-
trusion Detection Systems (HIDS) to underscore the necessity
of NIDS solutions for detecting APT attacks. Then, we use a
real-world APT attack scenario to discuss the usage of NIDS
and the problems existing NIDS solutions face in practice.

A. Limitations of HIDS

HIDS monitors the process activities (e.g., file, process and
network sockets) [12]–[14] in system logs to detect malicious
activities on an individual host. However, HIDS faces sig-
nificant practical limitations in a massive network, especially
against APT attacks. We explain each of these limitations of
HIDS in more detail below.

Graph construction: Netflow objects in system logs capture
data at the level of system events corresponding to indi-
vidual network packets. Directly analyzing packet-level data,
as Netflow logs require, is resource-intensive and inefficient
due to the voluminous amount of data generated, particularly
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Fig. 1: Workflow of an APT attack in DARPA OpTC.

in large network environments (e.g., enterprise or campus).
Constructing communication graphs across the entire network
poses significant practical challenges for HIDS. In contrast,
it is more feasible and efficient to create these graphs by
monitoring traffic flows in the network.

Log monitoring: In a large-scale network comprising over
10,000 devices, instrumenting every device within such a
network for data collection is not only impractical but also
less reliable. Should data collection fail on any device, it
would lead to a complete loss of traffic data from that
device, adversely impacting the analysis and overall system
performance. The maintenance cost is also high, since devices
may be equipped with diverse operating systems and utilize
varying log formats. In contrast, collecting network logs at the
gateway circumvents these issues, offering a more viable and
efficient solution for large-scale environments.

Resilience to zero-day attacks: HIDS solutions (e.g., Rap-
Sheet [15]) can only detect attacks that leave specific footprints
in system logs. Consequently, reliant on known patterns within
these logs, HIDS solutions are inherently limited to detecting
known threats, rendering them less effective against zero-
day attacks, which exploit unknown vulnerabilities and do
not match existing patterns. In contrast, network logs offer
a broader scope, capturing a wider range of interactions
and traffic patterns, potentially including anomalous behaviors
indicative of zero-day exploits. Nevertheless, zero-day attacks
that evade HIDS solutions are unlikely or at least difficult to
conceal their traces in network logs.

We argue that network logs contain sufficient attack traces
to detect multi-stage APT attacks. However, existing NIDS
solutions fail to achieve this due to various challenges that we
will elaborate on below.

B. Challenges in Existing NIDS

We leverage the “Plain PowerShell Empire” attack that
was launched in a real-world scenario in the DARPA OpTC
dataset [11], as our motivating example. Figure 1 shows the
attack process, comprising multiple stages. The adversary first
connects to the victim device host1 and downloads the
malicious PowerShell Empire stager into a batch file. Then, he

TABLE I
COMPARISON OF NETGUARDIAN AGAINST SOTA NIDS.

Systems Single-stage
detection

Multi-stage
detection

Attack
investigation

Massive
networks

[16] [19] [24] [25] [26] ✓ × × ×
[3] [9] [18] [27] [28] ✓ × × ✓

[20] [21] [22] [23] [29] ✓ ✓ × ×
[4] [10] [30] ✓ ✓ × ✓

[31] ✓ × ✓ ×
[32] × × ✓ ×

NETGUARDIAN ✓ ✓ ✓ ✓
* Generic anomaly detection is also considered as multi-stage detection.
* A network with over 10,000 hosts is considered a massive network.

escalates access privilege, gathers credentials using Mimikatz,
and edits the registry to establish persistence. Finally, the
adversary conducts a network scan against the /24 network
and utilizes WMI to pivot to host2, from where he pivots
to host3 using the same scanning method. On host3, the
adversary attempts multiple system-level activities, collects
information on the domain controller DC1, and pivots to DC1
with WMI, and so on.

However, it is challenging for existing NIDS to detect
the aforementioned attack. Unlike HIDS whose system logs
capture intricate details of system behaviors, NIDS suffer
from network traffic encryption (e.g., TLS). Consequently,
many network logs contain little information about encrypted
payloads, making it harder for NIDS to detect multi-stage
attacks. Despite the progress, a large number of NIDS [3],
[16]–[19] focus on single-stage detection (e.g., lateral move-
ment), which fails to provide a holistic view of the attack.
Those that support multiple-stage detection [10], [20], [21]
identify anomalous behaviors that do not directly map to
specific stages, and these anomalies are isolated, leading to
a fragmented view of ongoing threats. For example, in the
attack scenario depicted in Figure 1, existing NIDS might
detect anomalies on individual hosts, yet security analysts are
left with limited insights into the attack’s evolution throughout
its duration. Additionally, the sheer scale of networks can be
another barrier preventing the practical application of many
NIDS [22], [23]. To better understand these limitations, we
thoroughly investigate recently published NIDS solutions and
summarize our findings in Table I.

III. PRELIMINARIES

In this paper, we consider network communication as a
directed graph, with unique IPs as nodes1 and flow sessions
as edges, each with timestamps. Within this graph, a host or
node can be either the source or the destination of a directed
edge, depending on whether it is the source or destination IP
in a flow. This approach allows for a more detailed and accu-
rate representation of network activities, crucial for detecting
subtleties in APT attacks. Formally, the communication graph
can be represented as: G = (V, E ,XE), where V denotes the
set of nodes whose type is determined by whether the IP is
private, E denotes the set of edges for traffic flows, and XE

denotes the set of edge attributes (e.g., timestamps).

1In the rest of this paper, we will use IP, host, or node interchangeably.



A traffic flow is denoted as a directed edge e(u, v), where
u ∈ V, v ∈ V, e ∈ E , and the direction of the edge represents
the direction of network connection (i.e., connecting from u
to v). In addition, the edge records the start (e.st) and end
(e.et) time of the flow. Given two nodes n1 and n2, n2 has a
casual dependency on n1 if there exist two edges e1(n1, u1)
and e2(u2, n2) such that u1 = u2 and e1.st ≤ e2.et.
For an APT attack, we define its inter-stage casual path as
L = {v1, v2, ..., vn}, where vk ∈ V,∀k ∈ {1, ..., n}, repre-
senting the node in a specific APT stage, and vk has a causal
dependency on its preceding nodes, i.e., vi,∀i ∈ {1, ..., k−1}.

IV. THREAT MODEL & ASSUMPTIONS

NETGUARDIAN targets accurate identification of multi-
stage APT attacks and aims to provide exhaustive threat vector
coverage while minimizing false positives, given the notable
consequences of false detections in Security Operations Cen-
ters (SOCs) [5]. Tailored for organizations with constrained
analyst resources, NETGUARDIAN produces prioritized, ac-
tionable alerts and ranks potential attack paths by inherent risk,
enabling refined alert management strategies. The system’s
success is gauged by its ability to alert any APT stage that
leaves network footprints, prompting organizations to employ
advanced forensic methodologies for further analysis [5], [33].
This work envisages a large enterprise environment under
threat from well-funded, remote attackers executing swift,
disruptive assaults. Assumptions include network log integrity,
as per existing research [3], [34], with a network log collector
facilitating a transparent view of enterprise-wide network
activities. This paper does not consider attacks via hardware
layer, physical vectors, or side channels. While the secure
storage of network logs and accessibility only to authorized
users are crucial for user privacy, the enhancement of privacy-
preserving mechanisms in our system is left for future work.

V. DESIGN

Figure 2 presents the architecture of NETGUARDIAN, which
consists of four modules: Traffic Data Merging, Historical
Behavior Analysis, Stage Detector, and APT Causal Path
Reconstructor. The following subsections delve into the design
and operational details of these modules.

A. Traffic Data Merging

To simulate APT attacks in large networks (e.g., campus),
we need both large-scale background traffic (BT ) and attack
traces (AT ) from the real world. Background traffic is col-
lected by deploying a monitor at the network gateway, which
captures all external and most internal communications. This
method enables the profiling of internal nodes’ historical traffic
patterns, assisting in aligning nodes with attack traces. We
simulate APT attacks in a lab environment, following typical
settings in related works [35], [36], using the MITRE adver-
sary emulation library [37]. By manually launching each APT
stage, we control the attack progression, which ensures the
duration and time sequence captured are stable for each APT
stage. This simulation yields labeled attack traces, serving as
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Fig. 2: Overall NETGUARDIAN architecture.
ground truth to evaluate NETGUARDIAN. For each APT attack
stage, we record the time and methodology. Specifically, we
log the start time of each stage to create a timestamp sequence,
T = t1, t2, ..., tn. Here, n is the stage count and ti is the start
time of the i-th stage in AT . We then extract tmax and tmin

from BT . Data merging for the i-th attack stage between ti
and ti+1 follows specific rules for inserting attack flows into
the background traffic.

The key challenge behind data merging is to retain the
behavior of each attack stage while ensuring rational mapping
during data merging. To handle it, we design a merging
process that involves adjusting attack timestamps to fit into
the background traffic timeline and maintaining the stealth
and persistence of APT behaviors. Specifically, the timeline
of AT is proportionally mapped to that of BT . For instance,
if a network flow in the i-th stage starts at th, the updated
timestamp post-merging is t′h = tmax−tmin

tn−t1
∗ (th− t1)+ tmin.

IP mapping considers both source and destination IPs. This
process requires no change in the behavior of simulated attack
stages. IPs are selected based on the attack methodology in
each stage. For flows in stages, such as initial compromise
or data leakage, one IP is external. In stages, such as lateral
movement, both IPs are internal. After determining the IP type
and the updated timestamp t′h, we select IPs in BT active
near t′h as the mapped IPs. This approach assumes that it
is unreasonable to map a flow in AT to nodes that do not
communicate in BT .

B. Historical Behavior Analysis

This module analyzes nodes’ historical behavior, providing
a basis for anomaly detection in subsequent phases. It records
daily large-scale background traffic, extracting crucial node
statistical information for profiling, and is divided into Con-
nection Feature Extraction and Node Clustering components.
Connection Feature Extraction. Malicious (infected) internal
nodes often show abnormal network behavior, manifesting as



increased one-way connections or significant upstream and
downstream traffic disparities. We extract: (1) data volume
transmitted in both directions, (2) the total number of domains
accessed, (3) overall connections established, (4) the count of
one-way connections (where requests are rejected or ignored),
and (5) connections displaying significant traffic disparities
(with a ratio over 20 between data volumes) for each node.
This statistical information allows us to detect anomalies based
on the behavioral differences exhibited by nodes over time.
Node Clustering. Besides statistical traffic features, we cluster
internal nodes to identify abnormal behaviors. We do this
based on the observation that in a large network, the normal
behavior of most internal nodes is similar (except for special
nodes such as servers), while a minority of nodes fall into a
tiny cluster exhibiting abnormal behavior. To cluster nodes,
we first use the statistics extracted in the prior component as
features and normalize these features using min-max normal-
ization. Then, we leverage spectral clustering algorithm [38]
to cluster all internal nodes in the daily network traffic. After
clustering, a main class that consists of the majority of nodes
is formed, with a smaller class representing the minority.
We consider the nodes in the smaller class to have a higher
probability of exhibiting abnormal behavior on the same day.

C. APT Stage Detector

The next step is detecting the stages of APT attacks. After
reviewing a number of APT reports [39]–[41], we summarize
network-related behaviors that correspond to each of the stages
in the lifecycle of APT attacks. In the end, we consider the four
most representative stages whose communication activities can
be captured through network monitoring. These stages are
1) phishing emails, 2) connection to C2 servers, 3) network
scanning during lateral movement, and 4) data leakage. Our
key insight is that by identifying individual stages and causally
linking them together to reconstruct the whole attack path, we
can detect APT attacks with high accuracy. Notice that it is
possible that an APT attack has a different attack vector, but it
does not invalidate our methodology. Instead, our system has
a flexible architecture that supports the detection of new attack
vectors. In Section VI, we demonstrate NETGUARDIAN’s
capabilities against various APTs that span across all or a
subset of four stages. Below we explain the feature extraction
concerning each of these steps.

1) Phishing-Email Detector: According to reports [42],
many APT groups employ phishing emails to achieve initial
compromise. A detected phishing email in the network is
a strong signal indicating an adversary launches a potential
APT attack. To detect phishing emails, we train a detection
model through machine learning techniques. To do it, we first
download the normal and phishing-email datasets from Enron
email [43] and Phishing Corpus [44] dataset, respectively.
We leverage various features in our detectors, such as the
number of URLs included, the frequency of keywords (e.g.,
login or upgrade), and whether a reference/script is embedded.
Taking into account these features, we extract a 12-dimension
vector for each email, and normalize the numerical features

using min-max normalization. Finally, we train an SVM model
utilizing the normalized features from half of the data in both
datasets. Testing the other half shows that our trained model
achieves an accuracy of 93%. For emails in real network
traffic, we extract the same set of features and use the trained
model to determine if they are phishing emails. Upon detection
of a phishing email, the corresponding sender’s IP is flagged,
signifying a potential initial compromise.

2) C2-Communication Detector: C2-communication detec-
tion hinges on two observable features: the presence of peri-
odic connections between the C2 server and the infected host,
and the characteristics of DNS resolutions for C2 domains. For
the periodicity detection, we scrutinize the timestamp intervals
and data sizes of communication flows within identified IP
pairs. The coefficient of variation for these sequences is
meticulously computed, and IP pairs that exhibit coefficients
surpassing predetermined threshold values are flagged as po-
tential C2 communications. In the realm of DNS context
detection, the approach discerns the nuanced differences be-
tween the DNS resolutions associated with C2 traffic and
regular, benign traffic. Typically, C2 traffic exhibits isolated
DNS resolutions with no dependent relationships in their
context. The methodology involves recording the frequency
of specific domain resolutions by internal IPs, subsequently
analyzing the surrounding DNS context for each resolution
instance. The detection algorithm calculates and utilizes two
metrics, namely the average number of other domains resolved
concurrently and the maximum count of subsets containing a
specific domain, to effectively discriminate between C2 and
normal traffic.

3) Network-Scanning Detector: During the lateral move-
ment phase of APT attacks, adversaries engage in network
scanning, which is indicative of potential lateral movements.
Scanning behaviors can be categorized as vertical, where a
single internal IP is scanned at multiple ports, and horizontal,
involving multiple IPs scanned at a single port. In a Vertical
Scan, ports are classified as sensitive (e.g., 80, 443, 3389)
and non-sensitive, with the number of failed connections at
each being recorded as s1 and s2, respectively. An anomaly
score is calculated using SC1 = ω1 · s1+ω2 · s2, with ω1 and
ω2 as weights assigned to sensitive and non-sensitive ports [6].
For Horizontal Scans, we analyze connections initiated by an
internal host to others, using two sequences representing the
number of connections and the volume of data transmitted.
This leads to a normalized entropy-based anomaly score SC2.
If either SC1 or SC2 surpasses certain thresholds, the internal
IP is flagged for scanning behavior.

4) Data-Leakage Detector: In detecting data leakage, the
Data-Leakage Detector employs three calculated factors de-
rived daily for each internal node [9]. Each node h has an
associated feature vector xt = (x1

t , x
2
t , x

3
t ), encapsulating the

total upstream traffic to external networks, total connections to
external networks, and the number of accessed domains. The
first factor, f1

t , is the Euclidean distance between xt and cvt,
the center vector of the feature space for all nodes, providing
a measure of deviation from the norm. The second factor, f2

t ,



represents the degree of deviation of xt from its historical
values, offering insight into unusual activity over time. The
third factor, f3

t , evaluates the direction of the deviation in the
feature space, helping identify anomalous trends in the traffic
patterns of all internal nodes. The final anomaly score for a
node is computed as the product ft = f1

t ×f2
t ×f3

t . Nodes with
an anomaly score exceeding a predetermined threshold are
flagged as potential data leakage points, ensuring immediate
attention and action.

D. APT Causal Path Reconstructor

This module aims to reconstruct APT progression paths,
utilizing threat scores to identify and prioritize the most
suspicious paths indicative of APT attacks.
Inter-Stage Behavioral Analysis. Different from the stage
detector (Section V-C) focusing on detection models, we first
aim to identify anomalous behaviors that span across stages.
It helps facilitate the reconstruction of APT attack chain
in this module based on the different impacts of the same
behavior on different stages. For example, malicious payload
downloading could be launched in the initial compromise or
lateral movement stage. Intuitively, this downloading behavior
has a higher threat impact on the earlier stage (i.e., initial
compromise). For another example, a mining domain accessed
by a host indicates the host is a potential candidate for foothold
establishment. In a real APT attack, this host could later
launch the lateral movement activity in the subsequent step.
To identify inter-stage behaviors related to network traffic, we
reviewed a number of APT reports [39]–[41] and summarize
all inter-stage behaviors that are applied to NETGUARDIAN.
Threat Scores. For each of the behaviors summarized, we
define a threat score that reflects the degree of correlation
between the behavior and the attack stage. Specifically, for
each internal node h, we first sum the threat scores as the
stage score for all four stages. Then, we map the node to a
stage if the node’s stage score is over the threshold in that
stage for each of the stages. That said, the node h is more
likely to perform abnormal behavior in one or more stages
compared to other stages. Finally, we obtain a set of nodes
for each of the stages, labeled as U1, U2, U3, and U4.

Next, we reconstruct attack paths by correlating suspicious
nodes in the U1 − U4 sets. To do it, we first convert traffic
flows into a directed graph, where each node represents an
individual IP, and each edge the flow between two nodes. The
direction of edges is consistent with that of flows. The edge
contains information such as the start time and ports of the
corresponding flow. If there is a directed path from node h1

to node h2, and each edge on the path satisfies a temporal
dependency relationship (i.e., increasing timestamps), then h2

is considered reachable for h1.
Accordingly, we can reconstruct the attack path based on

the reachability relationship between nodes. To do it, we
perform temporal depth first search (T-DFS) [45] with each
node in U1 − U4 as the root node. The time and space
complexity of the T-DFS algorithm are O(|E| + |V|) and
O(|V|), respectively. Unlike standard DFS, T-DFS considers

whether the timestamp of the next edge and the current edge
satisfy temporal dependencies when performing searches. In
addition, standard DFS does not consider the presence of
multiple edges, which are common in our input data (e.g.,
h1 communicates with h2 multiple times). To address this
problem, we use the earliest timestamp when h1 connects to h2

to represent all communications from h1 to h2 during search.
In this way, we ensure all reachable paths can be included in
the searching results.

After performing T-DFS, we obtain a set of reachable nodes
for each node. Then, we take each node in U1 − U4 as the
root node, recursively traverse its set of reachable nodes, and
sequentially add the traversed nodes to form possible paths.
Finally, we calculate the threat score for each of all paths as
follows. For a path H = {h1, h2, ..., hm}, where m is the
number of nodes in the path, and hi (i ∈ [1,m]) is the i-
th node. We determine the threat score of path H as SC =∑

TS(hi)
m + 0.1 ∗ length1.1, where TS(hi) is the threat score

of node hi, and length the path length. If H’s sub-paths have
a higher score than H , we update H’s score to the average
of the highest score among sub-paths and H’s score. We rank
all paths based on their threat scores as the final output of the
detection model.

VI. EVALUATION

We answer the following research questions (RQs) in our
evaluation: RQ1: How does our system’s APT detection
accuracy compare to existing methods on real enterprise data?
RQ2: Can our system maintain detection precision as network
size increases? RQ3: How effectively does our model differ-
entiate between APT attack stages? RQ4: What is the system’s
efficiency in terms of computational and memory resources?
NETGUARDIAN is executed on a server with Intel(R) Xeon(R)
CPU E5-2630 v4 (2.20GHz), 188GB RAM running 64bit
CentOS Linux release 7.9.2009 (Core).

A. Baseline Comparison
In our comparative analysis, we selected the most recent

works ARGUS [10] and PIKACHU [4] as baselines due to
their comprehensive nature in APT detection. Contrasting with
systems like Euler [3], which are tailored to specific APT
stages (such as lateral movement), ARGUS and PIKACHU
encompass the entire spectrum of attack stages, making them
an appropriate benchmark for NETGUARDIAN’s multi-stage
detection capability. This focused approach to comparison
allows for a more equitable and insightful evaluation of
NETGUARDIAN in the context of holistic APT detection
systems. It is important to note that neither ARGUS nor other
related works support the reconstruction of causal paths in
APT scenarios. We do not evaluate against system log-based
provenance analysis approaches, such as ProGraPher [46] and
RapSheet [15], since they are HIDS solutions, a different scope
from ours, as outlined in Section II.

B. Evaluation Dataset
Two datasets were employed for our evaluation: the Anony-

mous Campus Network Traffic and DARPA OpTC [11]. Note



TABLE II
STATISTICS OF TRAFFIC DATASETS AND NETGUARDIAN’S PERFORMANCE RESULTS.

Attack

Statistics of traffic datasets Performance of different phases of NETGUARDIAN
Historical traffic
(daily average) Background traffic Attack traffic Historical Infor-

mation Extractor
Data Merging Stage Detector Attack Path

Reconstructor

# flows (M) # int./ext.
IPs # flows (M) # int./ext.

IPs # flows # int./ext.
IPs

#
stages

Exec.
Time (s)

Mem.
(GB)

Exec.
Time (s)

Mem.
(GB)

Exec.
Time (s)

Mem.
(GB)

Exec.
Time (s)

Mem.
(GB)

menu-
Pass 117.38 46K /

404K 104.53 28K /
25K 21 1 / 2 3 661 0.41 1,550 1.93 802 1.60 1,525 0.60

Sand-
worm 82.55 20K /

255K 82.69 29K /
228K 587 1 / 4 3 564 0.35 1,323 1.71 632 1.32 1,450 0.58

Wizard
Spider 94.42 40K /

276K 89.01 27K /
226K 366 1 / 3 3 595 0.36 1,392 1.75 680 1.49 1,490 0.69

OpTC
0923 33* 316 / 993 38.35* 325 /

1,002 3,667* 1 / 3 3 273 1.49 3,290 2.73 602 3.70 2,818 0.51

OpTC
0924 33* 316 / 993 34.47* 321 / 992 401* 2 / 3 4 273 1.49 3,579 2.85 614 11.34 16,154 0.87

OpTC
0925 33* 316 / 993 23.13* 315 /

1,025 563* 2 / 3 3 273 1.49 1,543 1.68 535 3.25 3,996 0.54

* In the table, “int./ext.” denotes internal/external, “Exec.” Execution, “Mem.” Memory, and “*” flows only from Zeek sensors in the OpTC dataset.
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Fig. 3: Statistics of background traffic for about four months
from 05/01/2023 to 08/20/2023.

that we exclude the LANL 2015 dataset [47] because it
discards most of the contextual information (e.g., filiation
relationship) which impedes fine-grained feature engineering.
Campus Network Traffic. To investigate APT attacks in large
networks, we monitored the gateway of an anonymous campus
network for over 110 days using Zeek [48] to capture daily
traffic flows. This traffic includes both internal and external
communications, with noticeable variations in external traffic
between the semester and the summer break. Figure 3 shows
the number of flows (3a) and IPs (3b) that have traffic captured,
respectively over the monitoring duration (i.e., 05/01/2023 -
08/20/2023). With an average of ∼1.05 billion total traffic
flows (over 2.38 TB of traffic data transmitted) and 45,078
active internal IPs daily, this data is representative of substan-
tial networks. For evaluation, we select a random day’s data
for background traffic and analyze the preceding ten-day traffic
for historical information extraction.

Simulated attacks capture the important traits of different
stages in the lifecycle of APT attacks. Specifically, we per-
formed three APT attacks [49]: menuPass, Sandworm, and
Wizard Spider that represent complex scenarios in the real
world. For Sandworm and Wizard Spider, we performed
the failed scenarios where the malware was unresponsive
and the lateral movement to the domain controller failed,
respectively. Both scenarios could evade traditional solutions
that rely on monitoring external data transfer to trigger alerts.
Note that we do not include attacks such as illegal storage and
backdoor download that are evaluated by related work [50],

since these attacks are either executed only on the host with no
network activities or have one-step simple logic to achieve the
malicious goal. Nonetheless, our solution is complementary to
existing ones that work on such attacks.
DARPA OpTC. The DARPA OpTC dataset [51], an ideal
candidate for APT detection research [52], is also included in
our study. This dataset comprises system and network audit
logs from 1,000 Windows-10 hosts. We developed a tool
to parse these logs, which have all internal traffic captured
by host sensors directly included in system logs, not in the
Zeek-captured network logs. To address this, FLOW objects
in system logs were parsed and mapped to external traffic
using IP addresses. Our evaluation utilizes the OpTC dataset,
containing ∼0.53 billion Zeek-sensor traffic flows and ∼8.76
billion host-level sensor traffic events. It is crucial to note
that NETGUARDIAN, in the OpTC dataset, relies on traffic
events rather than flows for detecting anomalies like internal
network scanning. The OpTC dataset encapsulates both benign
and malicious activities, documented through network and
host-level logs. Following an initial period of benign record
generation, the dataset incorporates multi-stage APT attacks
executed by a red team, occurring alongside continuous benign
traffic. For our evaluation, we profiled nodes based on five days
of benign traffic (09/18 - 09/22) and detected APT attacks
within three days of malicious traffic (09/23 - 09/25).
Ground Truth Labeling for the Attacks. Simulated attacks
on our hosts captured the start and end times of each stage and
related traffic, excluding benign traffic during attack execution
for accurate labeling. In the OpTC dataset, attack flows were
identified and mapped using source/destination IPs/ports and
timestamps, verified by detailed red-team documentation. We
manually checked both datasets for labeled flow completeness.

Table II presents the traffic statistics for both merged and
OpTC datasets, including flow numbers and internal/external
IP counts for all traffic types, with daily average statistics
provided for historic traffic.

RQ1: Detection of APT Attacks

To demonstrate the effectiveness of NETGUARDIAN in
detecting APT attacks, we investigate the ranking of the



TABLE III
THE RANKING OF GROUND-TRUTH ATTACK PATH IN THE

FINAL RECONSTRUCTED PATHS.

Attack menu
Pass

Sand
worm

Wizard
Spider

OpTC
0923

OpTC
0924

OpTC
0925

Ranking 1 1 1 3 1 1
* Underlined numbers represent the ranking in juxtaposition.
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Fig. 4: Statistics of attack nodes that are misclassified or
missing in top-ranked paths.

ground-truth attack path among those reconstructed by
NETGUARDIAN. Table III lists the results. We can see that
the ground-truth paths exhibit the highest threat scores for
nearly all attacks, with three rankings in juxtaposition. The
only exception is OpTC_0923, where the ground-truth path
ranks third. The reason is that the top-one path is a subset of
the ground-truth path, while the second-highest scoring path
lacks a host for lateral movement that is present in the ground-
truth path. The features of lateral movement on this absent host
are not as salient as those of other nodes, primarily due to the
lack of network scanning, which is verified by the red-team
report. Nonetheless, the result of OpTC_0923 is still promising
for real-world attack investigations. For two failed attacks,
NETGUARDIAN can also accurately identify the attack paths
among the top rankings, with one achieving the highest score
and the other ranking second.

We further measure the false positive rate (FPR) and the
false negative rate (FNR) among the top-ranked paths recon-
structed by NETGUARDIAN. The FPR and FNR are defined as
the number of benign nodes that are misclassified as malicious,
and the number of attack nodes that are missing over the
number of all nodes in reconstructed paths. We show the
results in Figure 4 where n on the x-axis represents all top n
paths. Consistent with aforementioned results, no attack node
is missed with a small number of nodes misidentified in the top

TABLE IV
COMPARISON OF DETECTION PERFORMANCE.

Attack FPR (%) TPR (%)
PKC AGS NG PKC AGS NG

menuPass 7.3 2.1 1.45E-03 92.7 90.5 95.6
Sandworm 7.5 2 2.62E-03 92.5 90.3 96.1

Wizard Spider 7.6 2.1 2.03E-03 93.0 90.1 96.4
OpTC 0923 4.2 0.05 7.48E-03 98.4 82.6 98.6
OpTC 0924 4.4 0.04 5.57E-03 98.2 82.7 98.8
OpTC 0925 4.2 0.06 2.28E-03 98.5 82.1 98.4

Average 5.9 1.1 3.57E-03 95.6 86.4 97.3
* PKC stands for PIKACHU, AGS ARGUS, and NG NETGUARDIAN.

two paths among all attack cases. Due to the limited number
of nodes in each path, the number of misidentified nodes is
small despite the relatively high FPR rate (i.e., over 20%) in
several attacks. For example, in the top three paths, menuPass
has the highest FPR (0.44), but the actual number of benign
nodes (i.e., misidentified) is 4. This indicates NETGUARDIAN
is highly effective in identifying all attack nodes while keeping
a low number of false positives.

To show NETGUARDIAN’s superior performance compared
to related works, we use ARGUS [10] and PIKACHU [4] for
comparison from the perspective of network anomaly detec-
tion. Notice that there exists no related work that precisely
aligns with our scope, as shown in Table I. Specifically,
we evaluate the performance of ARGUS and PIKACHU
on the same datasets as NETGUARDIAN (Section VI-B),
and measure the data processing rate, FPR, and TPR, as
summarized in Table IV, all pertaining to network edges.
Among all three metrics, NETGUARDIAN achieves the best
results, with a data processing rate of 45K edges per sec-
ond. Notably, NETGUARDIAN is 1.35× and over 170×
faster than ARGUS and PIKACHU, respectively, while main-
taining an FPR orders of magnitude lower than both. In
terms of TPR, NETGUARDIAN outperforms ARGUS and
PIKACHU by an average of 12.6% and 1.7%, respectively.
All these results demonstrate the efficiency and effectiveness
of NETGUARDIAN in real-world scenarios.

In our system, we ensure a low false positive rate by using
features specifically tailored to be indicative of APT attacks.
These features, including patterns of periodic connections in
C2 communications or network scanning behaviors, are highly
unlikely to manifest under normal network conditions. This
specificity significantly reduces the chances of benign activi-
ties being erroneously flagged as malicious. Moreover, our so-
phisticated threshold-setting mechanism, based on the analysis
of historical network data, establishes accurate baselines for
normal activities, enabling dynamic adjustment of thresholds
as network behaviors evolve. Additionally, NETGUARDIAN’s
comprehensive detection framework, integrating both intra-
and inter-stage behavioral analyses, offers further validation
of anomalies across various APT stages. Through this combi-
nation of highly indicative connection features, dynamic and
well-calibrated threshold settings, and a comprehensive detec-
tion framework, NETGUARDIAN ensures that the incidence of
false positives is minimized.
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Fig. 5: FNR and FPR in the top three paths under different
network sizes.



RQ2: Selection of Network Sizes

In the real world, APT attacks can persist over an extended
period. Hence, in this RQ, we aim to investigate whether
NETGUARDIAN can sustain its exceptional performance while
expanding the scale of network traffic. Specifically, we in-
crease the time span of the background traffic from one day
to two, four, and eight days, respectively, and merge simulated
attack traces into this expanded background traffic. We then
conduct the same evaluation as in RQ1. The results show the
ranking of the ground-truth path is unchanged as the network
size grows, with all attack paths consistently ranked first
among the reconstructed paths across the three simulated at-
tacks. Figure 5 shows the FPR and FNR results, corresponding
to the value of three on the x-axis in Figure 4. We can see that
NETGUARDIAN’s performance remains virtually unchanged
as the number of days increases. Notably, the FPR is zero when
only the top-ranked path is considered. These results are un-
surprising since NETGUARDIAN relies on attack features and
casual dependency for stage detection and path reconstuction.
Essentially, the effectiveness of NETGUARDIAN is unaffected
by the network size, both spatially and temporally.

RQ3: Revealing APT-Attack Stages

A key advantage of NETGUARDIAN is its capability to
explain the key stages of ATP attacks thanks to the application
of stage detection models. This is particularly helpful since the
identification of these stages requires domain expertise and
can be labor intensive. Existing solutions (e.g., those based on
system logs [50]) demand further analysis to identify the attack
stages even though the path is detected. Below we present
one representative attack to demonstrate NETGUARDIAN’s
competence on revealing APT-attack stages.
OpTC_0923: Figure 1 shows the workflow of the APT

attack conducted by red team on day one in the DARPA OpTC
dataset. The number represents the network activity in the
order of time, and bold green edges represent anomalous traffic
that is detected by NETGUARDIAN. The ground-truth path is
C2 (S1) → host1 (S2, S3) → host2 (S3) → host3 (S3)
→ DC1 (S2), where the stage ID after each node is the one
identified by NETGUARDIAN. Based on the red-team report
from the OpTC dataset, NETGUARDIAN detects all stages
correctly. Through these key stages, security analysts can
easily understand the attack logic and take actions accordingly.

For all other attacks, NETGUARDIAN achieves the same re-
sults as OpTC_0923, demonstrating its superior performance
on the interpretability of attack paths.

RQ4: System Performance

We measure the performance of NETGUARDIAN for each
of its modules. The results are shown in Table II. All statistics
in the table are calculated from datasets on a daily basis.
Particularly, for the historical information extractor, we first
recorded the execution time, memory usage, and the number
of flows for each dataset (one-day span), and then took the
average value over ten days for our monitored traffic and five
days for the OpTC dataset. Note that we measure the data

preprocessing costs as the performance of the data merging
module for the OpTC dataset. In the high level, it takes about
ten minutes for each of the first three modules to complete
the analysis of one-day data. It takes about 20 minutes for the
attack path reconstructor module to generate detection results
for our monitored dataset. The memory usage is stable across
all modules except OpTC_0924 that has significantly more
data to process compared to other OpTC attacks. Overall,
NETGUARDIAN demands a reasonable amount of system
resources to run, making it practical in real-world scenarios.

VII. RELATED WORK

In this section, we delve into existing NIDS, whose research
falls into the following distinct categories.
Signature-based NIDS. Some studies detect a specific type
of anomalies through behavioral pattern analysis, such as
botnet [53], cryptojacking malware [19], and APT-related mal-
ware [54]. In recent years, researchers leverage programmable
switches [16], [22] to achieve network intrusion detection.
There are also some works focusing on a specific stage
of APT attacks, such as lateral movement [34], periodical
communication between C2 servers and controlled hosts [55],
and data leakage [9] in the task-completion phase. However, all
these NIDS lack NETGUARDIAN’s ability to causally correlate
anomalies, thus fail to provide interpretable detection results
for multi-stage attacks like APTs.
Machine Learning-based NIDS. Some NIDS leverage tra-
ditional machine learning algorithms to learn normal traffic
behavior and detect anomalies. For example, researchers [56]
use clustering algorithms to detect outliers that are inconsistent
with normal traffic behavioral patterns. Some works employ
deep learning techniques [18], [24] or graph neural net-
works [3], [4], [10], [20] to detect traffic anomalies. Although
the aforementioned NIDS can effectively detect anomalies,
they focus on detecting a single attack stage, or lack analysis
of the correlation between various anomalies. In contrast,
NETGUARDIAN uses statistical models targeting each APT
attack phase individually with much less false positives, and
reconstructs APT paths to facilitate more accurate and detailed
investigation.

VIII. CONCLUSION

This paper introduces NETGUARDIAN, a network intrusion
detection system designed to address the limitations of current
NIDS in detecting sophisticated APTs. By leveraging multi-
stage causal analytics, NETGUARDIAN precisely correlates the
various phases of APTs by constructing attack progression
graphs. Our system outperforms SOTA NIDS in identifying
APT behaviors, prioritizing high-risk alerts, and enabling
threat detection through efficient traffic analysis. We present a
robust validation of NETGUARDIAN using real-world network
data, demonstrating its capabilities to accurately reconstruct
multi-stage attacks within complex enterprise environments.
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