
On the Forensic Validity of Approximated Audit Logs
Noor Michael

University of Illinois at
Urbana-Champaign
nsm2@illinois.edu

Jaron Mink
University of Illinois at
Urbana-Champaign

jaronmm2@illinois.edu

Jason Liu
University of Illinois at
Urbana-Champaign
jdliu2@illinois.edu

Sneha Gaur
University of Illinois at
Urbana-Champaign
sg2@illinois.edu

Wajih Ul Hassan
University of Illinois at
Urbana-Champaign

whassan3@illinois.edu

Adam Bates
University of Illinois at
Urbana-Champaign
batesa@illinois.edu

ABSTRACT
Auditing is an increasingly essential tool for the defense of comput-
ing systems, but the unwieldy nature of log data imposes significant
burdens on administrators and analysts. To address this issue, a
variety of techniques have been proposed for approximating the
contents of raw audit logs, facilitating efficient storage and analysis.
However, the security value of these approximated logs is diffi-
cult to measure—relative to the original log, it is unclear if these
techniques retain the forensic evidence needed to effectively inves-
tigate threats. Unfortunately, prior work has only investigated this
issue anecdotally, demonstrating sufficient evidence is retained for
specific attack scenarios.

In this work, we address this gap in the literature through for-
malizing metrics for quantifying the forensic validity of an approxi-
mated audit log under differing threat models. In addition to provid-
ing quantifiable security arguments for prior work, we also identify
a novel point in the approximation design space—that log events
describing typical (benign) system activity can be aggressively ap-
proximated, while events that encode anomalous behavior should
be preserved with lossless fidelity. We instantiate this notion of
Attack-Preserving forensic validity in LogApprox, a new approxi-
mation technique that eliminates the redundancy of voluminous
file I/O associated with benign process activities. We evaluate Lo-
gApprox alongside a corpus of exemplar approximation techniques
from prior work and demonstrate that LogApprox acheieves compa-
rable log reduction rates while retaining 100% of attack-identifying
log events. Additionally, we utilize this evaluation to illuminate the
inherent trade-off between performance and utility within existing
approximation techniques. This work thus establishes trustwor-
thy foundations for the design of the next generation of efficient
auditing frameworks.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC 2020, December 7–11, 2020, Austin, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427272

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Lo
g

Re
du

ct
io

n
(%

)

Forensic Validity (%)

Worst-case
Approx

CPR
GC

F-DPR
S-DPR

Figure 1: We present a novel analysis of the performance-
utility tradeoff for different log approximation techniques
according to the notion of Causality-Preserving Forensics, which
was introduced in [77] and formally defined as ameasurable
property in this work. Each point on the graph corresponds
to a different attack scenario described in Section 6.

KEYWORDS
Auditing, Data Provenance, Digital Forensics

ACM Reference Format:
Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wajih Ul Hassan,
and Adam Bates. 2020. On the Forensic Validity of Approximated Audit
Logs. In Annual Computer Security Applications Conference (ACSAC 2020),

December 7–11, 2020, Austin, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3427228.3427272

1 INTRODUCTION
Auditing is vital to the defense of computing systems. With alarm-
ing regularity [9, 39, 57, 66, 72], sophisticated threat actors are able
to breach perimeter defenses and subsequently wreak havoc on
organizations. Given our struggles keeping intruders out of systems,
the onus shifts to quickly detecting and responding to threats in
order to minimize their impact. Audit logs have proven invaluable
to these tasks; today, 75% of cyber analysts report that logs are
the most important resource when investigating threats [10]. The
importance of audit logs will only increase as state-of-the-art causal
analysis techniques for detection [22, 26, 52, 54, 74], alert triage
[29, 30], and investigation [32, 34, 42, 61] become widely available.

https://doi.org/10.1145/3427228.3427272
https://doi.org/10.1145/3427228.3427272

ACSAC 2020, December 7–11, 2020, Austin, USA Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wajih Ul Hassan, and Adam Bates

Unfortunately, the capabilities provided by system auditing come
at a cost. Commodity audit frameworks are known to generate
tremendous volumes of log data, upwards of a terabyte per machine
in a single month [22, 45, 49]. Not only is storing and managing this
data a burden, but the unwieldy nature of these audit logs also slows
down time-sensitive investigation tasks during in-progress attacks.
For example, Liu et al. observed that even a simple backtrace query
to determine the root cause of an event may take days to return
[45]. At present, the inefficiencies of system auditing seriously
undermine its use for effectively combatting real-world threats.

In response to this issue, researchers have called for optimizing
the contents of audit logs, based largely on the observation that
most events described by the log are not strictly necessary when
investigating threats. A variety of methods have been proposed for
achieving this goal, ranging from the filtering of events that describe
deleted system entities [43], do not connote a new information flow
[77] or do not effect the conclusions reached by standard forensic
queries [36], among many others [1, 4, 6, 8, 14, 24, 28, 48, 49, 51,
71, 75, 76]. We refer to these methods as approximation techniques
in this work. With many of these techniques reporting orders of
magnitude reduction in log size, the goal of holistic auditing of
large organizational networks seems within reach.

While these results are encouraging for the perspective of per-
formance, it is much more difficult to quantify the loss in utility that
arises from approximating the original log. Is an approximated log
equally useful when investigating threats? If not, under what cir-
cumstances can we expect the approximation routine to introduce
error? For example, Lee et al.’s pioneering LogGC system deletes
“dead end” events describing entities that no longer exist on the
system [43], but given the ephemeral nature of network sockets it
is likely that LogGC may destroy log events describing data exfiltra-
tion tactics. Unfortunately, prior work has offered only anecdotal
arguments for the utility of approximated logs.

In this work, we conduct the first independent analysis of the
utility of audit logs that have been subjected to approximation
techniques. We argue that utility is a measure of the “forensic va-
lidity” of a log for investigating different kinds of threats. To enable
measurement of forensic validity, we formalize three metrics for
characterizing approximated logs: Lossless, Causality-Preserving,
and Attack-Preserving. While these metrics are distilled from prior
work, we make the insight that each metric encodes a set of rela-
tionships that should be preserved under a specific threat model;
we enumerate what these threat models are and which metric is
most appropriate.

Using these metrics, we conduct an independent utility analysis
of a set of exemplar approximation techniques. We discover that
prior work often filters attack-related events when approximating
logs, compressing logs by as much as 93.7% but retaining as little
as 7.3% of attacker-related forensic evidence in the process. Whether
this sacrifice in utility is acceptable depends in practice on an orga-
nization’s resources and threat model. To aid system defenders in
making these decisions, we also use the notion of forensic validity
to reason about the trade-offs between the storage performance
of audit logs and their security utility. Figure 1 shows a portion of
our findings under the Causality-Preserving Forensics metric, which
measures the percent of events signifying information flow that are
retained in the approximated log. Each approximation technique

analyzed has 6 points on the graph, each corresponding to a differ-
ent attack scenario. The blue dashed line denotes the worst-case
baseline in which all dropped events are forensically relevant, with
points above the line indicating the technique outperforms the
baseline. We can see that Xu et al.’s CPR system [77] (which this
metric is based on) retains 100% of relevant log entries, but at the
cost of storage efficiency. Conversely, we see that other techniques
achieve storage efficiency almost proportionally to the percent of
causality-preserving events filtered. We report on performance-
utility tradeoffs for our other metrics in Section 6.4.

While optimizing logs for Attack-Preserving Forensics is prefer-
able for the efficiency of audit logs, it requires a method of delin-
eating typical process activity from unexpected system events. To
address this gap, we present LogApprox1, a regular expression
(regex) learning approach to approximation. LogApprox targets
the most space-intensive events found in logs, namely the file I/O
activity which can account for up to 90% of log contents.2 Once a
regex for a given process has been learned, LogApprox matches
and eliminates new events that match the regex. Through the de-
sign of a carefully-constructed learning algorithm, we demonstrate
that it is possible to generate a set of regexes that faithfully describe
typical process activity while simultaneously avoiding the filtering
of any attack-specific behaviors. We show that LogApprox retains
100% utility under the attack-preserving model while exhibiting
comparable performance to state-of-the-art techniques.

The contributions of this work are as follows:
• Forensic Validity Measurement. We formalize a set of metrics that
can be used to quantify the utility of logs under different threat
models. We conduct an independent analysis of an exemplar
set of approximation techniques, discovering in the process that
removal of attack-relevant events is common.
• Attack-Preserving Approximation Techniques. We present LogAp-
prox, an approximation method that is optimized for attack-
preserving forensics. LogApprox performs a bounded regex-
learning routine over process executions to learn their file I/O be-
haviors. While aggressively filtering events related to known file
behaviors, LogApprox retains a complete record of process-to-
process and process-to-network dependencies, thus facilitating
the causal analysis techniques.
• Evaluation and Attack Engagements. We evaluate the perfor-
mance of LogApprox and subject it to a series of attack scenarios
through which we measure forensic validity. These engagements
confirm that LogApprox satisfies attack-preserving forensics
while offering comparable reduction rates to prior work. Our
code and datasets are available on request.

2 BACKGROUND
Logging is critical to defending systems, facilitating intrusion de-
tection and post-mortem forensics of attacks. Audit logs can be
generated at different software layers; for example, Windows Event
Logs is an application-level framework for Active Directory envi-
ronments [12], while Event Tracing for Windows [11], Linux Audit
[65], and DTrace [21] are kernel-level frameworks that primarily

1Approx is an acronym for Attack-Preserving Provenance Reduction Over regeXes
2We observe in our evaluation datasets that 88.97% of events describe system calls
associated with file I/O.

On the Forensic Validity of Approximated Audit Logs ACSAC 2020, December 7–11, 2020, Austin, USA

D

C

E

B

A

A: /bin/bash
B: /etc/bashrc
C: /etc/rc
D: /bin/sed
E: /usr/bin/nano
F: /bin/python3
G: 10.10.0.3
H: .permission

EBA-5

EBA-4

EEC-1

ECA-2

ECA-3

EAD-6

Read

Read

Read

Read

Fork

Write

EEB-7
Write

F

ECF-8
Read

G
EGF-9

Read

H
EFH-10
Delete

Figure 2: Example provenance graph. In this provenance
graph boxes, diamonds and ovals represent processes, sock-
ets and files, respectively. Green boxes represent live pro-
cesses while blue boxes represent terminated processes.

log system calls. While all logs can be of potential use during threat
investigations, low-level (kernel-level) audit frameworks are espe-
cially useful in threat hunting because they can be used to reliably
trace dependencies between applications running on the hosts.

An audit log is a sequence of temporally-ordered event tuples
(i.e., < subject ,object ,access, timestamp >), which can be further
parsed into a causal dependency (i.e., provenance) graph by incre-
mentally linking entities associated with each event tuple according
to the access type (see, e.g., [5, 25, 38, 56]). Specifically, in a prove-
nance graph G = (V ,E) each vertex v ∈ V corresponds to a system
object such as processes, files, and sockets, v while each e ∈ E en-
codes a dependence relationship between those objects and roughly
corresponds to a single log event. These directed edges point back-
ward in time, denoting a provenance (historical) relation between
events. An example provenance graph is shown in Figure 2. Here,
a process named /bin/bash represented by vertex A reads a file
named /etc/rc represented by vertex C . The edge between ver-
tices A and C is represented by ECA−2read where 2 is a timestamp
while read denotes a read event type fromC to A vertices. Multiple
edges between two vertices denote the same events occurring at dif-
ferent times, e.g., edges ECA−2 and ECA−3 denote two read events.
Finally, at the time of analysis, vertices vertices can be either in a
live or terminated state. In Figure 2, vertices A, D, and E are live
processes while vertex F is a terminated process.

Provenance graphs allow investigators to perform forensic anal-
ysis. Investigators can perform tracing queries on the provenance
graph to figure out the root-cause and ramifications of a cyber
attack. We formally define these tracing queries as follows:

Definition 2.1. Backward Trace: A backward trace of edge e is
the subgraph ofG reachable from e (or equivalently, the destination
vertex of e).

Definition 2.2. Forward Trace: A forward trace of edge e is the
subgraph ofG reachable from e in the reverse graph ofG (or equiv-
alently, the source vertex of e).

A backward trace enables an analyst to identify the root cause(s)
of a particular event, e.g., the point of entry of an intruder into the
system. In Figure 2, the backward trace of the event (edge) EAD−6
with event type Fork will traverse edgesEBA−4,EBA−5,ECA−2,ECA−3,
and EEC−1, identifying process vertex E (/usr/bin/nano) as the

root-cause. Note that even though EEB−7 is reachable from EAD−6
in the graph, it is not included in analysis because event EEB−7
happened after event EAD−6. Conversely, a forward trace identifies
the impact of a particular event. A forward trace from the root
cause summarizes all actions taken by the attacker. For example,
in Figure 2, to find the impact of event EC−1, a forward trace will
return a subgraph consisting of ECA−2,ECA−3,EAD−6,ECF−8, and
EFH−10.

2.1 Audit Log Approximation
Although audit frameworks are extremely helpful to threat investi-
gation, their use is impeded by the sheer volume of logs generated.
Log overheads vary depending on the load of the machine, but have
been reported to be anywhere between 3 GB [43] and 33 GB [49] per
day for web servers and around 1 GB per day for workstations [43].
As a result, storing and analyzing these logs is often infeasible in
practice — log data is often purged just a few days after its creation
[70], and when it is retained for longer periods, simple trace queries
may take days to return [45].

To combat the limitations of pervasive system auditing, many
techniques for log approximation have been proposed. These ap-
proximation methods analyze the structure and semantics of the
provenance graph to identify components (i.e., log events) that are
unlikely to be of use to an analyst and can therefore be removed.
While a variety of approaches to log approximation have been
proposed based on filtering policies [4, 6], taint analysis [8, 51],
templatization [24, 28, 71], or simple compression [75, 76], we de-
scribe at length three influential exemplar approaches below:

Garbage Collection (GC). First proposed by Lee et al. [43],
garbage collection is based on the observation that subgraphs that
exclusively describe dead system entities do not affect the present
state of the system and can therefore be removed. Consider a process
that generates a temporary file, then deletes it. If no other process
accesses that temporary file, all log events associated with that
file can be removed from the graph. A visualization of garbage
collection is given in Figure 3 (a). Garbage collection has since been
incorporated into other log analysis systems, e.g., [48, 49, 51].

Causality-Preserving Reduction (CPR). Introduced by Xu et
al. [77], CPR observes that many log events are redundant because
they do not denote a new information flow. Consider a process that
writes to a file twice. If the process did not read from any other ob-
ject between the two writes, we can remove the log event describing
the second write because the process state did not change between
writes. Note that, in actuality, the data buffer may have been com-
pletely different in each write event; however, because log events do
not include data buffers, the graph must conservatively assume that
all process state is transferred during each information flow event,
thus the second write is completely redundant. A visualization of
CPR is given in Figure 3 (b). CPR has been adopted or extended by
subsequent log analysis systems, including [30, 36, 45, 71].
Dependence-Preserving Reduction (DPR) Building on the CPR
concept, Hossain et al. propose that preserving causality is unnec-
essary so long as the provenance graph returns the correct system
entities to forward and backward trace queries [36]. Consider a
vertex for which there are two causal paths back to its root cause;
this represents a potential redundancy and one of the two edges

ACSAC 2020, December 7–11, 2020, Austin, USA Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wajih Ul Hassan, and Adam Bates

(b) Causality Preserving Reduction
(c) Source Dependence
Preserving Reduction

A: /bin/bash, B: /etc/bashrc, C: /etc/rc, D: /bin/sed, E: /usr/bin/nano, F: /bin/python3, G: 10.10.0.3, H: .permission

D

C

E

B

A
F

GH

(a) Garbage collection

D

C

E

B

A F

GH

D

C

E

B

A F

GH

Figure 3: Visualizations of exemplar log approximation techniques. We used the provenance graph example from Figure 2
to apply each exemplar log approximation technique. Graph edges marked in dotted lines and vertices which are grayed out
represent events that are filtered by each technique. (a) Provenance graph after applying LogGC technique [43]. (b) Provenance
graph after applying CPR technique [77]. (c) Provenance graph after applying S-DPR technique [36].

may be deleted, provided that the edge is not necessary to pre-
serve dependency for some other node. Hossain et al. introduce
two variants of DPR, Source Dependency-Preserving Reduction
(S-DPR) in which only backward trace reachablity is preserved,
and Full Dependency-Preserving Reduction (F-DPR) in which both
backward and forward trace reachability are preserved. A visual-
ization of S-DPR is given in Figure 3 (c). DPR was incorporated and
discussed in recent work [35] and is also significant in boasting
among the highest reduction rates in the literature.

Limitations of Prior Work. While the performance characteristics
of these approaches were effectively evaluated in prior work (i.e.,
storage overheads), the security characteristics of the approximated
logs have proven more difficult to quantify. When approximating
the log, problems of graph reachability and interpretability may
arise. Further, if events are merged or deleted, then interpreting
the graph becomes more difficult. Worse yet, key details of the
attack behaviors may be lost in ways that were unanticipated by
the designers of the approximation technique.

Without exception [31, 36, 43, 71, 77], prior work was evalu-
ated exclusively through attack scenario case studies in which a
forensic analyst needs to answer a specific query during investi-
gation. While illustrative of the potential benefits of a technique,
this approach is ultimately anecdotal; it may be that analysts need
to answer a broader range of queries that were not considered in
the case study, or that the semantics of the specific attack scenario
did not adequately capture the forensic utility of the approximated
log. Worse yet, under this evaluation the efficacy of approximation
methods is reduced to a binary ’yes’ or ’no’ depending on whether
or not the analyst is able to achieve a hand-selected forensic goal.
In the following section, we present a set of nuanced and descrip-
tive methods for characterizing the security of an approximation
technique. These metrics provide a continuous (i.e., non-binary)
value for characterizing forensic validity.

3 FORENSIC VALIDITY METRICS
To better characterize the security utility of log approximation
techniques, we formalize three complementary forensic validity

metrics that can be used to evaluate an approximated log. Each
metric encodes the amount of preserved evidence (i.e., log events)
under a threat model that an analyst may encounter during the
course of an investigation. In order to provide generalizable state-
ments on the utility of approximation algorithms, we make no
assumptions on the goals of the analysis or the events needed to
return a specific query, but rather the number of events that remain
intact. The key insight behind these metrics is that, rather than
anecdotally demonstrating value in a specific attack behavior, util-
ity should be measured as a property of the approximated graph or
log. We propose three such metrics: Lossless, Causality-Preserving,
and Attack-Preserving.

3.1 Lossless Forensics
This metric assumes the adversary may not abide by system
level abstractions for communication and coordination of
malicious processes. The adversary may use avenues such as
obscure system-layer timing channels to exfiltrate data from a col-
luding process (e.g., [13, 69]). In such scenarios, the audit log may
not explicitly contain all causal relationships but may encode in-
ferrable implicit relations. For instance, the frequency and timing
of system calls used to communicate within a covert channel may
also be used by the system to infer whether a covert channel, and
thus a causal relationship, exists. Unfortunately, such channels have
been found in nearly every sector of computer architecture and are
continually introduced as the hardware beneath operating systems
evolves [23]; therefore, is it unreasonable to predict which events
may contain implicit relations and thus we conservatively assume
all events may encode such dependencies. Lossless Forensics as-
sumes every dropped event potentially destroys implicit causal
relations and thus is defined as follows.

Definition 3.1. Lossless Forensics: Given G = (V ,E) and approx-
imation G ′ = (V ′,E ′) in which V ′ ⊆ V and E ′ ⊆ E, a lossless log
implies that E ′ = E. Distance from losslessness can be measured as
a continuous variable using the formula 1 − |E\E

′ |

|E | .

On the Forensic Validity of Approximated Audit Logs ACSAC 2020, December 7–11, 2020, Austin, USA

syscall=execve name=“~/firefox”
…
syscall=read name=“.mozilla/datareporting/aborted-session-
ping.tmp"
syscall=read name=".mozilla/datareporting/archived/
2018-04/2344.44eb0835e-4a135f9af3df.main.jsonlz4.tmp"
syscall=read name=".mozilla/datareporting/archived/
2018-04/5990.43ca-9dca-28304f471c7d.main.jsonlz4.tmp"
syscall=read name=".mozilla/datareporting/archived/
2018-04/1002.4402-bc3b-f6102aa8ec14main.jsonlz4.tmp"
…

Audit Log

Firefox

Approx
Regex

Generation Graph
Reduction

.mozilla/datareporting/aborted-session-ping.tmp

.mozilla/datareporting/archived/2018-04/*.*.main.jsonlz4.tmp

syscall=execve name=“~/firefox”
…
syscall=read name=“.mozilla/
datareporting/aborted-session-ping.tmp"
syscall=read name=".mozilla/
datareporting/archived/2018-04/
..main.jsonlz4.tmp"
…

Approximated Log

.mozilla/datareporting/aborted-session-ping.tmp

Learned Regex

…

.mozilla/datareporting/archived/2018-04/2344.44eb0835e-4a135f9af3df.main.jsonlz4.tmp

.mozilla/datareporting/archived/2018-04/5990.43ca-9dca-28304f471c7d.main.jsonlz4.tmp

.mozilla/datareporting/archived/2018-04/1002.4402-bc3b-f6102aa8ec14main.jsonlz4.tmp
Audit Log

 Provenance Graph

Firefox

.mozilla/datareporting/aborted-session-ping.tmp

.mozilla/datareporting/archived/2018-04/*.*.main.jsonlz4.tmp

Approximated Log
 Provenance Graph

Figure 4: Overview of the LogApprox architecture and workflow. File activity and audit logs are analyzed by the Regex Generation
routine, which generates bounded regular expressions that each describes a specific semantic behavior of the benign process
(e.g., “loads shared objects”). These regex are then applied to the original log and matching entries are pruned. Causality is
preserved in the associated provenance graph by connecting associated edges to the newly-collapsed node.

In other words, losslessness can be measured by the fraction of
edges in E that are missing from E ′. Note that it is not necessary to
directly test the completeness of V , as each edge is a log event and
the associated system entities in V are extracted from these tuples.

3.2 Causality-Preserving Forensics
This metric assumes that the adversary abides by system level
abstractions for communications and coordination of mali-
cious processes. As only explicit information flows are utilized
by the adversary, one can be sure that the complete log faithfully
contains an explicit description of all causal relationships. Within
such a model, we used the well-studied subject of information flow
(IF) to describe causal relationships and thus encode Xu et al.’s
Causality-Preserving Reduction technique [77] as our metric. In a
log that satisfies causality-preserving forensics, all events that en-
code new causal relationships are retained, whereas edges that are
causally redundant are discarded. We define the metric as follows.

Definition 3.2. Causality-Preserving Forensics: Information flows
fromG are preserved in the approximated graphG ′. An information
flow is defined by the existence of a path between two edges in G.
The following describes two situations where two edges describe
the same information flow:

• Two read edges e1, e2 describe the same information flow if they
have the same endpoints process p and file f , and no write to f
or read from p to a file f ′ , f occurred between e1 and e2.
• Two write edges e1, e2 describe the same information flow if they
have the same endpoints process p and file f , read from p to a
file occurred between e1 and e2.

Let EI F be the set of edges matching this definition of distinct
information flow inG .G ′ preserves causality iff EI F ∈ E

′. Distance
from causality preservation can be measured using the formula
1 − EI F \(E′∩EI F)

EI F .

3.3 Attack-Preserving Forensics
Under Attack-Preserving Forensics, the adversary’s system-
level actions deviate from benign behavior. With few excep-
tions, past approximation techniques apply reduction uniformly to

all log events, regardless of whether or not the events describe ma-
licious or benign activity. This is because, understandably, it is diffi-
cult to predict ahead of time which events are attack-relevant; how-
ever, in many cases it is safe to make assertions about predictable
benign process behaviors. In a similar fashion to host anomaly de-
tection, a suite of approximation reduction techniques attempt to
distinguish benign from anomalous behavior and selectively reduce
based on that classification. Building on causality-preservation,
our final metric captures an approximation technique’s ability to
preserve attack-relevant causal relations without penalizing the
reduction of attack-irrelevant log events.

Definition 3.3. Attack-Preserving Forensics: Given a causality-
preserving approximated provenance graph GI F , let GB ⊆ GI F be
the subgraph of naturally occurring benign system behavior and
GA = GI F \ GB be the subgraph describing an attack campaign
A. The approximated graph G ′ ⊆ GI F that contains G ′A ⊆ G ′ is
said to satisfy attack-preservation if G ′A is a causality-preserving
approximation of GA. Distance from attack-preservation can be
measured using the formula 1 − |EA\E

′
A |

|EA |
, where EA and E ′A are the

edge sets of GA and G ′A, respectively.

We make the following observations. First, this metric uses the
causality-preserving approximated graph, not the lossless prove-
nance graph, as its baseline. Additionally, this metric not only disre-
gards unrelated benign activity, but exclusively considers the causal
edge set that uniquely describes the attack campaign A. In other
words, events that appear in the attack path ofA that also appear in
GB are not considered in measurement. The intuition behind this
approach is that edges that are shared between benign and behav-
iors hold little forensic value in investigations; they do not uniquely
signify malicious activity, and hence are candidates for approxi-
mation. That said, because G ′A must still be causality-preserving,
the attack-preservation metric assures that connectivity between
processes and other essential information flow is preserved.

4 DESIGN
While the attack-preserving forensic validity represents a desirable
trade-off between the utility and efficiency of audit logs, designing
of an approximation technique that satisfies attack-preservation

ACSAC 2020, December 7–11, 2020, Austin, USA Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wajih Ul Hassan, and Adam Bates

in is quite challenging. Trivially, a causality-preserving graph is
implicitly also an attack-preserving graph, but does not capitalize
on the increased reduction opportunities afforded by the attack-
preserving metric. To do so, it is necessary to gain an understanding
of typically-occurring benign-process events and make generalized
assertions about benign events that may occur in the future. Simul-
taneously, it is also necessary to assure that generalizations about
benign process activity are not so general that attackers may abuse
them to conceal malicious behaviors.

4.1 Overview
In this section, we present LogApprox, a novel solution to attack-
preserving log approximation. An architectural overview for Lo-
gApprox is given in Figure 4. LogApprox searches for log reduction
opportunities by generating regular expressions that describe be-
nign process file I/O. These regexes are crafted in such a way to
avoid overgeneralization, which might lead our system to filter
events that describe unique attack patterns. After the regexes are
generated, they are applied to past and future file I/O events (e.g.,
creat, open, read, write) in the audit log. For all events that
match the same regex, the original filename is replaced with the
regex pattern; then causality-preserving reduction is applied to
remove events that are redundant from an information flow per-
spective. When the log is parsed into a provenance graph, the
original file vertices are replaced with a single approximated file
vertex. Because the information flows into and out of the regex
remain unchanged, causality is otherwise preserved.

Our approach focuses exclusively on file activity for two im-
portant reasons. First, file I/O dominates the overall storage space
of audit logs — 88.97% of all events in our evaluation datasets —
and causality-preserving reduction [77] is not a total solution to
this overhead because applications often write to a tremendous
number of different files. Second, other system events (e.g., process,
network) are more important to retain because they are essential
to causal analysis. Process events are already low overhead and
are needed to preserve the process tree, which is the “backbone” of
causal analysis, while network events are needed to trace attacks
across multiple hosts in the network. We thus choose to focus on
file I/O in our design.

4.2 Reduction Algorithm
Our reduction algorithm begins by identifying, for each process,
which files it has interacted with. Our provenance graph encodes
this information by edges to (read) and from (write) a process
node. From this list of files, we will generate groups of files with
similar filenames. Replacing each group of files with a single place-
holder in the provenance graph allows us to reduce the graph
complexity and hence filter redundant log entries.

4.2.1 Regular Expression Learning. Our goal is to distribute a list
of filenames associated with a process into groups of similar files.
For a particular filename (eg. /usr/bin/ls) we distinguish the path
(eg. /usr/bin/) and the name itself (eg. ls).

We define the distance between two names as the Levenshtein
edit distance. Corresponding to this edit distance is an optimal align-
ment, which will be useful later in constructing a regular expres-
sion. We define similarity between two names x1,x2 as (max_len −

Algorithm 1: Generate Groups
Data: List of filenames f1, . . . , fn
Result: Groups of filenames G

1 Empty list G ;
2 while not added file fi do
3 Set Gi ← {fi };
4 for filenames fj not added to a group do
5 if Distance(Path(fi), Path(fj)) ≤ path_threshold and

Similarity(Name(fi), Name(fj)) ≥ name_threshold then
6 Add fj to Gi ;
7 Append Gi to G ;
8 Return G ;

Algorithm 2: Generate Regular Expressions
Data: Groups of filenames G = [G1, . . . , Gn]
Result: Regular Expressions R = [r1, . . . , rn]

1 Empty list R ;
2 for every Gi ∈ S do
3 Set ri ← Gi [1];
4 for filenames f ∈ Gi [2, . . . ,m] do
5 Find alignment a between ri and f ;
6 Replace modifications in a with wildcards;
7 Set ri to a;
8 Append ri to R ;
9 Return R ;

Dist(x1,x2))/max_len, where max_len = Max(Len(x1), Len(x2)).
For the distance between two paths, we treat each directory name
as a token. We only consider the distance when both paths are
of equal depth, because differences in depth contain semantically
relevant information. We define the path distance between two
paths as the number of differing directory names.

We compute the path distance and name similarity between
all pairs of filenames. We choose groups such that all filenames
within a group have a path distance below a specified threshold
and a name similarity above a specified threshold. We empirically
determined our path threshold to be 1 and our name threshold to be
0.7. We found this to be a good tradeoff that allows for aggressive
log reduction capabilities while avoiding over-generalization.

Algorithm 1 groups the files into sets, where each file is at most
a certain distance from another file in its set. These thresholds are
computed separately for both file paths and file names, as shown on
line 5. We return a list of such groups, each of which corresponds
to a regex.

Algorithm 2 shows how to compute the regex corresponding
to a group of files. We compute the path regex and name regex
individually using this approach. To compute a regex from two
strings, we find the edit distance alignment, and for every location
where the tokens do not match, we replace it with a placeholder.
We reduce this binary operation across the list of filenames. We
coalesce placeholders and replace each with a token matching zero
or more occurrences of a wildcard. We then concatenate the path
and name regexes to generate a regex matching all files in the group.
If there is only one element in the group, we return that filename
as the corresponding regex.

This algorithm uses a binary regex generation function, taking
as input the current progress and the next filename. It reduces this
function across all filenames in a group. If the current regexmatches
the next filename, it will remain unchanged.

On the Forensic Validity of Approximated Audit Logs ACSAC 2020, December 7–11, 2020, Austin, USA

Algorithm 3: Log Reduction
Data: Log and Provenance Graph
Result: Reduced Log

1 for every process p do
2 Compute list of groups G ;
3 Compute list of regexes R ;
4 for every group Gi ∈ G do
5 for all reads e to file f ∈ Gi (in order) do
6 if since the last read, there was a write to f or a read from p to a

file , f then
7 Keep e and overwrite f with ri ;
8 else
9 Delete e ;

10 for all writes e to file f ∈ Gi (in order) do
11 if since the last read, there was a read from p to a file , f then
12 Keep e and overwrite f with ri ;
13 else
14 Delete e ;
15 Return log;

4.2.2 Log Reduction. The overall log reduction procedure is pre-
sented in Algorithm 3. For every process, we generate a list of
filenames corresponding to file accesses initiated by the process.
These filenames are grouped as per Algorithm 1, and their corre-
sponding regular expressions are generated as per Algorithm 2. For
every group of filenames, we reduce the log entries between the
process and these files preserving information flow. We do not re-
duce filenames corresponding to regular expressions with a length
below a certain threshold, in our case, 10 characters, since they can
overgeneralize. In effect, we are treating this group of filenames as
one large file. For the log entries that have not been removed, we
overwrite the filename with the regular expression corresponding
to the group, as shown in lines 7 and 12.

This reduction algorithm acts on every log entry corresponding
to a file access. It either keeps or deletes a log entry based on the
information-flow preservation criteria outlined in the background.

5 IMPLEMENTATION
We implemented a log analysis tool that parses Linux Audit
(audit) logs and CDM provenance graphs, the DARPA Engage-
ment data format. Our tool generates a provenance graph in mem-
ory using the SNAP graph library [44]. Our provenance graph
representation has nodes corresponding to processes, files, and
other file-like objects (e.g. VFS, network sockets). Edges correspond
to individual log entries. Our entire tool is implemented in 4000
lines of C++ code (calculated with cloc [2]). Our reduction filter,
LogApprox, is implemented in 1000 lines of code.

To evaluate LogApprox against a representative set of exemplar
systems, we also re-implemented Log Garbage Collection, intro-
duced in Lee et. al [43], Causality-Preserving Reduction, introduced
in Xu et. al [77], and Full and Source Dependence Preserving Reduc-
tion, introduced by Hossein et. al [36], based on their descriptions
in the original paper. Our implementation of garbage collection is
based on “Basic GC” in the original LogGC system [43], while we
implement the techniques as described in [77], [36] as faithfully as
possible. We do note that, because we did not have access to the
authors’ source code, it is possible that our implementation of these
techniques deviate from the original systems, which could in part
explain some of the differences in observed reduction rates in our

Approximation
Technique

Originally Reported
Reduction

Observed
Reduction

CPR [77] 1.3-3.4X (23% - 71%) 1.3X (23%)
GC [43] 0-77.0X (0% - 99%) 1.6X (38%)
F-DPR [36] 4.5-91.5X (78% - 99%) 6.6X (85%)
S-DPR [36] 4.5-122.5X (78% - 99%) 11.2X (91%)

Table 1: Comparison of log reduction rates between reports
from prior work and our own tests using the Theia dataset.
For ease of reference, we report both of the 2 different sta-
tistics used in prior work; log reduction factor (Raw Log /
Reduced Log) and in parenthesis the log reduction percent-
age (1 - Reduced Log / Raw Log).

experiments (e.g., Table 1). This said, we are confident that each
of our implementations is consistent with the methodology pre-
sented in the original works, and are thus satisfactory for exploring
different points in the design space of approximation strategies.

Because our tool is based on an in-memory database, it was
necessary to manage memory overheads by partitioning the the
provenance graph into epochs of time, each of which spans 5 min-
utes in our implementation. At the end of each epoch, the approxi-
mation technique(s) is (are) applied and the remaining log events
are written to disk, at which point the process resets. We argue
that this approach is not only more practical, but also provides
approximately real-time telemetry for security monitoring services.
However, this also means that redundant events between epochs
are not identified in our implementation, making the observed log
reduction rates in our evaluation an underestimation of the optimal
reduced logs. Fortunately, in experimenting with different epoch
sizes, we observed that the differences in log reduction rates were
negligible, and that 5 minute epochs were sufficient to achieve
similar log reduction rates to those reported in prior work.

6 EVALUATION
6.1 Datasets
We leverage the DARPA Transparent Computing Program dataset
for our evaluation [15]. This dataset was collected during an APT
simulation exercise (Engagement #3) in April 2018, containing
events from a series of target hosts, along with ground truth infor-
mation about the attacks. It has been used in prior work as a source
for authentic examples of adversarial behavior [17, 34]. We select
the Linux-based logs corresponding to two hosts from the DARPA
Engagement, Trace and Theia.

In addition to the Transparent Computing engagements, we
also select 6 attack scenarios leveraged in prior work (e.g., [30,
32, 41, 54]) to evaluate the efficacy of log reduction systems. The
unrealircd [18], vsftpd [19], and webmin [20] exploits all
leverage input vulnerabilities to achieve remote code execution
(RCE). A payload is then executed, which launches a reverse shell
back to the attacker machine that executes commands such as
ifconfig. The Wordpress vulnerability [63] and Webshell are
exploits that execute a payload through a web server that calls back
to the attacker machine as before. The Firefox vulnerability is an
exploit on Firefox 54.0.1 that gains execution through a malicious
ad server. This vulnerability was exploited as part of DARPA TC

ACSAC 2020, December 7–11, 2020, Austin, USA Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wajih Ul Hassan, and Adam Bates

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5 10 15 20 25 30

Lo
g

Si
ze

 (
M

B)

Time Elapsed (Hours)

Raw
Approx

GC
CPR

F-DPR
S-DPR

(a) Theia Dataset

 0
 20
 40
 60
 80

 100
 120
 140

 0 5 10 15 20 25

Lo
g

Si
ze

 (
M

B)

Time Elapsed (Hours)

Raw
Approx

GC
CPR

F-DPR
S-DPR

(b) Trace Dataset

Figure 5: Cumulative Log Size Stored after different reduc-
tion techniques on the Theia and Trace datasets. In both
datasets, LogApprox outperforms all approaches besides Full
and Source Dependence.

Engagement #3 [15]. We use the subset of logs associated with this
particular exploit during this evaluation.

6.2 Performance Evaluation
To evaluate the performance of our reduction technique at scale, we
concatenate all logs from a particular dataset and run our reduction
algorithm. The end of an epoch corresponds to either the end of a
log file or when 5 minutes elapse.

6.2.1 Re-Implementation Validity. We begin by comparing the re-
duction rates of our re-implementations to the findings of the orig-
inal works. The results for the Theia dataset are shown in Table 1.
As log reduction has been reported differently in different papers,
we provide both the reduction factor and reduction percentage
statistics. While some of our implementations did not reach the
peak reduction rates observed in prior work, they are all consistent
with prior observations of these systems. The differences in perfor-
mance can likely be attributed to the process behaviors used in the
test datasets. Our implementation of CPR performed closest to the
reports of the original paper. This confirms our intuition that CPR
is the most generally applicable of past approximation techniques
and is thus a solid basis for our attack-preserving extension.

6.2.2 Reduction Performance. We now compare the reduction per-
formance of LogApprox to other approximation techniques using
the Theia and Trace datasets. Figures 5a and 5b show the growth

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

Lo
g

Si
ze

 (
M

B/
H

ou
r)

Time Elapsed (Hours)

Generated
Processed

Figure 6: Log Processing speed relative to the generation of
logs in the Theia dataset, which we replayed in real-time.

in log size for all approximation techniques over the course of the
attack engagements in Theia and Trace respectively. Note that the
final position of the lines in Figure 5a corresponds to the reduction
rates observed by past techniques in Table 6. We observed that all
approximation techniques performed better on the Theia dataset;
this is because the Theia engagement had many significantly more
events, offering more opportunities for reduction. In contrast, the
Trace dataset contains many small and disjoint log traces, creating
fewer reduction opportunities.

We observed that LogApprox consistently performed between
GC/CPR and F-DPR/S-DPR. LogApprox’s reduction factor was
2.87X and 1.72X (removing 42% and 65% of the raw log) on the
Theia and Trace datasets, respectively. Hossain et al.’s F-DPR and S-
DPR [36] had the largest reduction factors, respectively boasting up
to 85% and 91% reductions in log size during the Theia engagement.
In Section 6.4, we determine whether this extreme efficiency comes
at the cost of valuable forensic information.

6.2.3 Log Ingest Performance. A final consideration for the perfor-
mance of our LogApprox system is whether or not its reduction
analysis can keep pace with the speed of log event creation. Figure
6 compares the event generation rate of the Theia dataset. Because
LogApprox was evaluated by replaying this dataset, as opposed to
observing events as they occur in realtime, we calculate the maxi-
mum ingest rate of LogApprox in MB per hour by observing how
long it took LogApprox to process the 391 MB of Theia log files. We
see that LogApprox’s ingest rate of 45.44 MB per hour far outpaces
the amount of logs generated during the Transparent Computing
engagement and is thus suitable for general use.

6.3 Utility Evaluation
We now evaluate the utility of approximated logs through our foren-
sic validity metrics. The Trace and Theia datasets contain multiple
intrusion attempts, only some of which are well-documented, so
they are not an effective ground truth for use with our metrics.
Instead, we evaluate the utility of these systems based on a curated
set of real-world program exploits. Each exploit was implemented
by the authors based on public documentation or downloaded from
public repositories (e.g., exploitdb), then launched in a controlled
VM environment to capture the associated audit logs. Following
the test, two authors reviewed the log entries and marked all events

On the Forensic Validity of Approximated Audit Logs ACSAC 2020, December 7–11, 2020, Austin, USA

 0

 20

 40

 60

 80

 100

Unrealircd

Vsftpd

W
ebmin

W
ordPress

W
ebshell

Firefox

Fo
re

ns
ic

 V
al

id
ity

 (
%

)

Attacks

Approx
CPR
GC

F-DPR
S-DPR

(a) Lossless

 0

 20

 40

 60

 80

 100

Unrealircd

Vsftpd

W
ebmin

W
ordPress

W
ebshell

Firefox

Fo
re

ns
ic

 V
al

id
ity

 (
%

)

Attacks

Approx
CPR
GC

F-DPR
S-DPR

(b) Causality-Preserving

 0

 20

 40

 60

 80

 100

Unrealircd

Vsftpd

W
ebmin

W
ordPress

W
ebshell

Firefox

Fo
re

ns
ic

 V
al

id
ity

 (
%

)

Attacks

Approx
CPR
GC

F-DPR
S-DPR

(c) Attack-Preserving

Figure 7: Forensic validity measures for different reduction
techniques (taller is better). Only LogApproxand CPR fully
satisfy Attack-preserving Forensics, while other techniques
sacrifice significant attack-relevant information.

found on the forward trace paths from the point of entry. There was
no disagreement between authors on which entries fell on the path.
All log events (including those not directly on the attack paths) are
included in the below tests.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Lo
g

Re
du

ct
io

n
(%

)

Forensic Validity (%)

Worst-case
Approx

CPR
GC

F-DPR
S-DPR

(a) Lossless

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Lo
g

Re
du

ct
io

n
(%

)

Forensic Validity (%)

Worst-case
Approx

CPR
GC

F-DPR
S-DPR

(b) Attack-Preserving

Figure 8: Scatterplots of the performance-utility tradeoff ac-
cording to the notion of Lossless and Attack-Preserving Foren-
sics. Each point on the graph represents one of the 6 attack
scenarios considered by each approximation technique.

Figure 7 shows our results for each of the forensic validity met-
rics. Taller bars are better as they signify that more forensic ev-
idence was retained. For the Lossless Forensics metric in 7a, we
see that all sacrifice significant forensic context, especially F-DPR
and S-DPR because they boast the largest log reduction rates. This
is not surprising, or even concerning, as prior approaches to log
approximation did not consider the extreme threat model for which
timing side channels need be accounted. An interesting direction
for future work would be to consider approximation techniques
that preserve information about the timing distribution of repeated
events.

For the Causality-Preserving Forensics metric, we confirm that
CPR preserves 100% of forensic information as expected. GC retains
a consistently high amount of forensic evidence, retaining 91% or
better in all cases. LogApprox appears moderately conservative in
forensic reduction, preserving 90% causality or greater in 4 of the 6
scenarios while retaining 36% in the worst-case. F-DPR and S-DPR’s
aggressive nature retains between 45%-80% in 3 of the 6 scenarions,
while retaining as much as 95% in the best case scenarios, and as
little as 6.0%-17.0% in the 2 worst-cases. This suggests that, even by

ACSAC 2020, December 7–11, 2020, Austin, USA Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wajih Ul Hassan, and Adam Bates

established measures of forensic validity such as information flow
preservation, these techniques are sacrificing potentially important
forensic context. Whether or not the lost data is actually relevant
to analysis of a particular attack is likely case-specific. For example,
Hossain et al. applied F-DPR on Trace while retaining the ability to
identify the attack [35]. The lost data may negatively impact other
analysis that was unneeded for their particular purposes.

Results for Attack-Preserving Forensics are shown in Figure
7. LogApprox retains 100% of forensic evidence under the attack-
preserving metric, as does CPR. Because attack-preserving evidence
is a subset of causality-preserving evidence, the 3 remaining ap-
proximation techniques all perform slightly better under this model.
GC comes close to satisfying attack-preserving validity, achieving
between 96% and 99% in all scenarios. This result makes sense as
GC was specifically designed to clean-up process behaviors that
are associated with benign process activity, such as temporary file
I/O. Unlike causality-preserving forensics, attack-preserving foren-
sics does not penalize deletion of typical process activity. S-DPR
and F-DPR retain similar forensic validity under attack-preserving
as they did under causality-preserving, maintaining between 42%-
80% in 3 cases, 85%-94% in the best case, and 7%-17% in the 2 worst
cases. This indicates that S-DPR and F-DPR filter log events without
regard for typical or atypical behavior.

6.4 Performance vs. Utility
We plot the performance-utility tradeoff per attack scenario in
Figures 1 (Causality-Preserving), 8a (Lossless), and 8b (Attack-
Preserving), where utility is one of the forensic validity metrics
defined in Section 3. The blue dashed line denotes the worst-case
utility an algorithm could achieve in a scenario where all dropped
events are forensically relevant (and thus no redundancies exist).
An “ideal” technique would place its points in the top right corner,
where both the validity and reduction are maximized. The optimal
and worst-case utility curves are both metric and scenario specific
but plotting trends of reduction algorithms against such strawman
metrics still provides useful insight. These plots enable informed
decision-making about the value of additional log retention under
different threat models. For example, S-DPR trades off very high
reduction (and thus space efficiency) for lower forensic validity. If
space is a limiting factor, it may be preferable to save sparser data
spanning a longer time period with a highly reducing technique
like S-DPR over denser data spanning a shorter time period from
less approximating techniques. This would allow analysts to recon-
struct long-term basic facts about an attack (e.g., root cause) at the
expense of short-term details.

Intuitively, no technique can outperform the worst-case utility
baseline under the Lossless Forensics metric (Figure 8a), as every
dropped event is considered a utility loss. Several interesting pat-
terns emerge when analyzing the tradeoffs in causality preservation
(Figure 1). Approx, F-DPR, and S-DPR all exhibit significant vari-
ance between attack scenarios, but their performance-utility ratio
remains roughly proportional. This variability in tradeoffs reflects
the design goals of these systems; e.g., S-DPR focuses exclusively
on identifying the correct system entities in backtraces. CPR, by
design, maxes out utility here, but GC performs nearly as well. This

(a) Lossless Provenance Graph

(b) LogApprox’s Attack-Preserving Provenance Graph

Figure 9: Simplified provenance graphs of the webmin ex-
ploit. (a) depicts the raw audit log, while (b) shows the prove-
nance graph produced after LogApprox is applied.

may not be the case in attacks that involve significant destruction
of system entities, e.g., an attacker exfiltrates, then destroys data.

The value of Attack-Preserving Forensics becomes most evi-
dent in Figure 8b. As only a subset of causality-preserving events
uniquely describe attack semantics, LogApprox is able to match
CPR in utility while significantly outperforming it in log reduction
in each scenario. While GC is not as aggressive, it continues to per-
form well under this metric, validating Lee et al.’s design decisions
in the earliest log approximation paper to appear in the literature.

6.5 LogApprox Case Study
To better understand the benefits of LogApprox as compared to
prior work, we now examine the Webmin exploit above in more
detail. Webmin is a web-based configuration tool for Unix systems,
thus it is a prime target for attackers as it can be leveraged for lateral
movement on the network. The exploit allows for unauthenticated
remote code execution when the web server is configured for users
with an expired password to enter a new one. With the appropriate
payload, a reverse shell can be spawned and post-exploitation tools
(eg. LinEnum.sh [64]) can be downloaded and run on the server
machine. We chose to run commands manually, namely whoami
and ifconfig, to demonstrate that we have remote access.

On the Forensic Validity of Approximated Audit Logs ACSAC 2020, December 7–11, 2020, Austin, USA

Figure 9 displays provenance graphs corresponding to the unap-
proximated log (9a) and LogApprox’s attack-preserving log (9b).
These graphs have been simplified for visualization purposes, as the
unapproximated and reduced log contain 13026 and 11013 edges
respectively. The numbered edges in the graph correspond to times-
tamps, and attack-specific vertices are shaded in red. Due to space,
we omit the causality-preserving attack graph produced by CPR;
it is the same as LogApprox’s graph except that the lib*.so.*
vertex is replaced by the original 3 vertices.

As can be seen, is is possible to reconstruct the attack com-
pletely through interpreting the graph. The CPR filter applied to
the LogApprox graph does not meaningfully effect investigation
because information flow is preserved. However, the complexity
of LogApprox is reduced due to the fact that benignly-occurring
graph components are approximated by a regular expression. Note
that some forensic information that is potentially attack-relevant
is sacrificed by LogApprox. Specifically, because the libraries are
loaded into memory prior to the attack occurring, it is possible
that their contents informed outbound data transfers to the remote
Attacker IP. While this is possible, our argument is that lossless
descriptions of these library files remain unuseful because their
significance to the attack will not be apparent from the system-layer
audit log; these libraries are loaded all of the time by webmin dur-
ing typical activity, so they do not provide any threat intelligence
even though they may technically be relevant to the attack. Hence,
it is reasonable to prune and approximate these graph components.

7 DISCUSSION
7.1 Optimality of LogApprox
We do not argue that LogApprox is the ideal instantiation of attack-
preserving forensics. In this work, we only target one major sub-
system of system activity, namely file I/O, because it commonly
accounts for a large percentage of log volume and can be safely
filtered without disrupting the causality of more complex attack
behaviors such as lateral movement or data exfiltration. Approx-
imating other system entities, e.g., remote IP addresses, is much
more perilous, as even a common remote connection may describe
an important attack behavior during lateral movement. It is inter-
esting to consider how the notion of attack-preserving forensics
could be extended in future work.

7.2 Limitations of Attack Corpus
One notable limitation that we share with prior work is that we
are still limited in the corpus of attack behaviors that we evalu-
ate against. A standardized battery of attack behaviors that coin-
cide with our metrics may enable us to capture more nuances in
the performance-utility tradeoffs of approximation techniques, but
maintaining such an attack corpus is extremely difficult due to
ever-changing adversary techniques and tactics [55]. We attempt
to mitigate this limitation by using state-of-the-art attack engage-
ments produced for the DARPA Transparent Computing program.
Regardless, our datasets are sufficient to validate our hypothesis
that approximation techniques must be evaluated both for storage
performance as well as forensic utility.

7.3 Security Analysis of LogApprox
We now consider the security implications of LogApprox’ regex-
based File IO compression procedure. An intrusion is comprised of
an inter-dependent set events that includes process, network, and
file activities, all of which are captured by the unmodified audit log.
LogApprox does not affect process and network log events in any
way, meaning that network-based activities (e.g., lateral movement)
and the interdependencies of attacker-controlled processes are fully
documented. In the case of file activities, we can further divide File
IO events of the attacker-controlled process between those that are
similar to the benign process (i.e., regex matches) and those that
are wholly distinct (i.e., regex non-matches). We argue that it is
safe to approximate matched File IO events; this is because such
events cannot be used to detect an intrusion, and if a process is
linked to in an intrusion by other means than the files it accesses
are also implicated. As a result, the intrusion’s incident response
plan would necessarily entail re-imaging the compromised process,
causing any malicious data hidden by the attacker in a ’benign’ file
to be erased. In contrast, File IO events that don’t match a regex are
retained faithfully by LogApprox. These non-match events are far
more important to threat detection and investigation – in order for
the attacker to accomplish their objectives on the system, they will
need to establish persistence, escalate privilege, etc. This means
that they will need to deviate from the behaviors of the benign
application, which is unlikely to have accessed sensitive system
files needed for these tactics. Avoiding compression of uncommon
File IO event also ensures that this information remains available
to intrusion detection tools.

If an attacker is aware of LogApprox’s presence, they may pat-
tern their intrusion so as to to minimize their use of uncommon
File IO behaviors. Recall that LogApprox retains a lossless version
of the process tree, network links, and uncommon file behaviors;
the worst case scenario is therefore that the attacker is able to
spread through the system via common benign file behaviors. Even
in this scenario, LogApprox is able to produce an end-to-end attack

graph of the intrusion, but the graph will admit a limited number
of false dependencies as compared to an attack graph produced by
the uncompressed log. Specifically, if an attack path flows through
a LogApprox regex, then the processes that interacted with other
files matched by that regex will be incorrectly included in the graph.
That said, in practice such a feat is unlikely. As shown in Figures 4
and 9, in practice we observe that LogApprox primarily generates
regexes that describe “dead-end” or “one-way” IO behaviors such
as temporary files, configuration files, or read-only shared objects.
These file IO behaviors cannot create process-to-process links, so
they would not lead to false dependencies in an attack graph.

A final consideration is whether or not the adversary can manip-
ulate the way in which LogApprox generates regexes. It would be
highly convenient for the attacker to create an overly broad regex,
e.g., “match *”, which would cause all file IO to be erased from
the log. However, due to LogApprox’ parameterizable name and
path similarity thresholds, it is not possible to distort benign access
patterns into an overly broad regex – path matching can deviate
from concrete access patterns by at most one directory level, and
files can only be matched if they are at least 70% similar to one
another. Instead, an attacker could repeatedly issue variations on

ACSAC 2020, December 7–11, 2020, Austin, USA Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wajih Ul Hassan, and Adam Bates

the malicious access pattern until a regex is created; however, this is
far from covert. In order for this to happen, the attacker essentially
needs to repeatedly issue the very command they were hoping
to conceal. To further reduce the likelihood of this occurring, the
administrators could fine-tune LogApprox’s parameters (e.g., set
path distance to zero) to improve security at the cost of diminished
reduction capacity.

8 RELATEDWORK
This work is the first to formalize and quantify the forensic validity
of audit logs that have been subjected to approximation techniques.
We discuss past approximation techniques in Section 2. Like LogAp-
prox, Tang et al.’s NodeMerge [71] templatizes process behaviors
for compression purposes, but only operates on read-only file activ-
ity at the beginning of process execution. As a result, NodeMerge
could likely create a template for the Figure 9 example, but not
for other process behaviors accommodated by LogApprox such as
temporary file I/O. We chose not to evaluate NodeMerge because it
requires a training phase that is highly deployment-specific, making
it difficult to understand how the approach generalizes.

Beyond the challenge of log reduction, another important con-
sideration is log security; if audit logs can be manipulated by the
attacker, they cannot be trusted in an investigation. A variety
of cryptographic approaches enable tamper-evident logging (e.g.,
[7, 16, 27, 33, 47, 67, 68, 78, 79]). Research has also explored software-
based solutions to securing audit logs, demonstrating that refer-
ence monitor guarantees [3] are sufficient to assure log integrity
[5, 53, 60, 62]. Additionally, recent works utilize cryptographic
primitives for log integrity within trusted execution environments
[37, 58] and kernel audit frameworks [59]. Like all other work in
the space, LogApprox depends on the presence of mechanisms that
can assure and attest to the integrity of audit logs.

Considerable attention has given to extracting high-level seman-
tic insights from low-level system logs and graphs. A central issue
with system logs is dependency explosion, a semantic gap problem
in which long-lived processes (or data objects) appear to have a
large number dependencies when viewed from the system layer. A
variety of execution partitioning techniques have been proposed to
partition opaque dependencies into small autonomous units of work
[30, 32, 40–42, 48–51]. Execution partitioning creates additional op-
portunities for log reduction [43], but these opportunities are not
considered in our work because execution partitioning solutions
are application-specific, not system-wide. Regardless, we believe
these techniques are interoperable with LogApprox, although they
may not be as essential because LogApprox already removes a
large percentage of false dependencies related to benign execution
units. Prior work also considers related semantic gap problems,
including the reconciliation of system-level logs with application
logs [32, 61] and the identification of high-level semantic behav-
iors [34, 46, 73]. These techniques should also be compatible with
LogApprox, provided that the analyst is only interested in fully
reconstructing attack-related sequences of events.

Increasingly, causal analysis techniques are being incorporated
into intrusion detection tasks. Manzoor et al. [52], Han et al. [26],
andWang et al. [74] present anomaly detection algorithms based on
the analysis of provenance graphs. Hassan et al. address the false

alert problem common in commercial threat detection software
using provenance-based alert triage [30]. Milajerdi et al. present
a rule-based approach for detecting attacker tactics [54], similar
to commercially-available Endpoint Detection & Response (EDR)
software, but based on provenance graph structures instead of
flat audit event sequences. Subsequently, Hassan et al. extended a
commercial EDR tool with lightweight provenance-based alert cor-
relation [29]. Their approach to making their technique practical for
large enterprise environments is to aggressively filter provenance
graphs such that only queries about inter-alert dependency can be
answered by the approximated log. In contrast to other approxima-
tion techniques discussed in this work, Hassan et al.’s approach is
not intended for use in generic threat investigation scenarios where
many forms of causal query must be supported. While we primarily
consider threat investigation, our forensic validity metrics can also
be interpreted as an indicator of how log approximation techniques
may assist or impair intrusion detection tasks.

9 CONCLUSION
The security utility of log approximation techniques has proven
difficult to measure; in this work, we codify a set of forensic validity
properties that can measure the utility of approximated logs. We
present LogApprox, a new approach to log approximation that
leverages repetition in file I/O behavior to learn regular expressions
that characterize common access patterns, allowing aggressive re-
duction of benign log events. We conduct a principled evaluation
of both the performance and utility of LogApprox, comparing it to
a representative set of techniques from prior work. It is our hope
that this work provides expressive baselines for the evaluation of
future log approximation systems.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions. This work is supported
in part by NSF 17-50024. The views expressed are those of the
authors only.

REFERENCES
[1] Raza Ahmad, Melanie Bru, and Ashish Gehani. 2018. Streaming Provenance

Compression. In Provenance and Annotation of Data and Processes, Khalid Belhaj-
jame, Ashish Gehani, and Pinar Alper (Eds.). Springer International Publishing,
Cham, 236–240.

[2] AlDanial. 2019. cloc: Count Lines of Code.
[3] James P. Anderson. 1972. Computer Security Technology Planning Study. Technical

Report ESD-TR-73-51. Air Force Electronic Systems Division.
[4] Adam Bates, Kevin R. B. Butler, and Thomas Moyer. 2015. Take Only What You

Need: Leveraging Mandatory Access Control Policy to Reduce Provenance Stor-
age Costs. In 7th Workshop on the Theory and Practice of Provenance (Edinburgh,
Scotland) (TaPP’15).

[5] Adam Bates, Dave Tian, Kevin R.B. Butler, and Thomas Moyer. 2015. Trustworthy
Whole-System Provenance for the Linux Kernel. In Proceedings of 24th USENIX

Security Symposium (Washington, D.C.).
[6] Adam Bates, Dave Tian, Grant Hernandez, Thomas Moyer, Kevin R.B. Butler, and

Trent Jaeger. 2017. Taming the Costs of Trustworthy Provenance through Policy
Reduction. ACM Trans. on Internet Technology 17, 4 (sep 2017), 34:1–34:21.

[7] Mihir Bellare and Bennet Yee. 1997. Forward integrity for secure audit logs.
Technical Report. Computer Science and Engineering Department, University of
California at San Diego.

[8] Y. Ben, Y. Han, N. Cai, W. An, and Z. Xu. 2018. T-Tracker: Compressing System
Audit Log by Taint Tracking. In 2018 IEEE 24th International Conference on Parallel
and Distributed Systems (ICPADS). 1–9. https://doi.org/10.1109/PADSW.2018.
8645035

https://doi.org/10.1109/PADSW.2018.8645035
https://doi.org/10.1109/PADSW.2018.8645035

On the Forensic Validity of Approximated Audit Logs ACSAC 2020, December 7–11, 2020, Austin, USA

[9] Tara Siegel Bernard, Tiffany Hsu, Nicole Perlroth, and Ron Lieber. 2019. Equifax
Says CyberattackMay Have Affected 143Million in the U.S. https://www.nytimes.
com/2017/09/07/business/equifax-cyberattack.html. Last accessed October 16,
2020.

[10] Carbon Black. 2018. Global Incident Response Threat Report. https://www.
carbonblack.com/global-incident-response-threat-report/november-2018/. Last
accessed 04-20-2019.

[11] Microsoft: Windows Dev Center. 2018. About Event Tracing.
[12] Microsoft: Windows Dev Center. 2018. Event Logging.
[13] Ang Chen, W. Brad Moore, Hanjun Xiao, Andreas Haeberlen, Linh Thi Xuan

Phan, Micah Sherr, and Wenchao Zhou. 2014. Detecting Covert Timing Chan-
nels with Time-Deterministic Replay. In 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 14). USENIX Association, Broomfield,
CO, 541–554. https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/chen_ang

[14] Chen Chen, Harshal Tushar Lehri, Lay Kuan Loh, Anupam Alur, Limin Jia,
Boon Thau Loo, and Wenchao Zhou. 2017. Distributed Provenance Compression.
In Proceedings of the 2017 ACM International Conference on Management of Data

(Chicago, Illinois, USA) (SIGMOD ’17). ACM, New York, NY, USA, 203–218. https:
//doi.org/10.1145/3035918.3035926

[15] DARPA Transparent Computing. 2020. Transparent Computing Engagement 3

Data Release.
[16] Scott A. Crosby and Dan S. Wallach. 2009. Efficient data structures for tamper-

evident logging. In In Proceedings of the 18th USENIX Security Symposium.
[17] Birhanu Eshete, Rigel Gjomemo, Md Nahid Hossain, Sadegh Momeni, R. Sekar,

Scott D. Stoller, V. N. Venkatakrishnan, and Junao Wang. 2016. Attack Analysis
Results for Adversarial Engagement 1 of the DARPA Transparent Computing
Program. ArXiv abs/1610.06936 (2016).

[18] Exploit-DB. 2010. UnrealIRCd 3.2.8.1 - Backdoor Command Execution.
[19] Exploit-DB. 2011. vsftpd 2.3.4 - Backdoor Command Execution.
[20] Exploit-DB. 2019. Webmin 1.920 - Unauthenticated Remote Code Execution.
[21] FreeBSD. 2019. DTrace on FreeBSD. https://wiki.freebsd.org/DTrace. Last

accessed October 16, 2020.
[22] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu Wu,

Chung Hwan Kim, Sanjeev R. Kulkarni, and Prateek Mittal. 2018. SAQL: A
Stream-based Query System for Real-Time Abnormal System Behavior Detection.
In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 639–656. https://www.usenix.org/conference/usenixsecurity18/
presentation/gao-peng

[23] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey of mi-
croarchitectural timing attacks and countermeasures on contemporary hardware.
Journal of Cryptographic Engineering 8, 1 (2018), 1–27.

[24] Ashish Gehani, Minyoung Kim, and Jian Zhang. 2009. Steps Toward Managing
Lineage Metadata in Grid Clusters. In 1st Workshop on the Theory and Practice of

Provenance (San Francisco, CA) (TaPP’09).
[25] Ashish Gehani andDawood Tariq. 2012. SPADE: Support for Provenance Auditing

in Distributed Environments. In Proceedings of the 13th International Middleware

Conference (ontreal, Quebec, Canada) (Middleware ’12). Springer-Verlag New York,
Inc., New York, NY, USA, 101–120. http://dl.acm.org/citation.cfm?id=2442626.
2442634

[26] Xueyan Han, Thomas Pasqueir, Adam Bates, James Mickens, and Margo Seltzer.
2020. Unicorn: Runtime Provenance-Based Detector for Advanced Persistent
Threats. In 27th ISOC Network and Distributed System Security Symposium

(NDSS’20).
[27] Ragib Hasan, Radu Sion, and Marianne Winslett. 2009. The Case of the Fake

Picasso: Preventing History Forgery with Secure Provenance. In Proceedings

of the 7th USENIX Conference on File and Storage Technologies (FAST’09). San
Francisco, CA, USA.

[28] Wajih Ul Hassan, Nuraini Aguse, Mark Lemay, Thomas Moyer, and Adam Bates.
2018. Towards Scalable Cluster Auditing through Grammatical Inference over
Provenance Graphs. In Proceedings of the 25th ISOC Network and Distributed

System Security Symposium (NDSS’18). San Diego, CA, USA.
[29] Wajih Ul Hassan, Adam Bates, and Daniel Marino. 2020. Tactical Provenance

Analysis for Endpoint Detection and Response Systems. In 41st IEEE Symposium

on Security and Privacy (SP) (Oakland’20).
[30] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,

Zhichun Li, and Adam Bates. 2019. NoDoze: Combatting Threat Alert Fatigue
with Automated Provenance Triage. In 26th ISOC Network and Distributed System

Security Symposium (NDSS’19).
[31] Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam Bates, and Thomas Moyer.

2018. Towards Scalable Cluster Auditing through Grammatical Inference over
Provenance Graphs. In 25th Annual Network and Distributed System Security

Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018. The
Internet Society. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/
25/2018/02/ndss2018_07B-1_Hassan_paper.pdf

[32] Wajih Ul Hassan, Mohammad Noureddine, Pubali Datta, and Adam Bates. 2020.
OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-layer Log
Analysis. In 27th ISOC Network and Distributed System Security Symposium

(NDSS’20).
[33] Jason E. Holt. 2006. Logcrypt: Forward Security and Public Verification for

Secure Audit Logs. In Proc. of the Australasian Information Security Workshop

(AISW-NetSec).
[34] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang, Birhanu Eshete, Rigel

Gjomemo, R. Sekar, Scott Stoller, and V.N. Venkatakrishnan. 2017. SLEUTH: Real-
time Attack Scenario Reconstruction from COTS Audit Data. In 26th USENIX

Security Symposium (USENIX Security 17). USENIX Association, Vancouver,
BC, 487–504. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/hossain

[35] Md Nahid Hossain, Sanaz Sheikhi, and R. Sekar. 2020. Combating Dependence
Explosion in Forensic Analysis Using Alternative Tag Propagation Semantics. In
Proceedings of the 2020 IEEE Symposium on Security and Privacy (S&P).

[36] Md Nahid Hossain, Junao Wang, R. Sekar, and Scott D. Stoller. 2018. Dependence-
preserving Data Compaction for Scalable Forensic Analysis. In Proceedings of the

27th USENIX Conference on Security Symposium (Baltimore, MD, USA) (SEC’18).
USENIX Association, Berkeley, CA, USA, 1723–1740. http://dl.acm.org/citation.
cfm?id=3277203.3277331

[37] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Latifur Khan. 2017. SGX-
Log: Securing System Logs With SGX. In Proceedings of the 2017 ACM on Asia

Conference on Computer and Communications Security (ASIA CCS ’17).
[38] Samuel T. King and Peter M. Chen. 2003. Backtracking Intrusions. SIGOPS Oper.

Syst. Rev. 37, 5 (Oct. 2003), 223–236. https://doi.org/10.1145/1165389.945467
[39] Brendan I. Koerner. 2019. Inside the Cyberattack That Shocked the US

Government. https://www.wired.com/2016/10/inside-cyberattack-shocked-us-
government/. Last accessed October 16, 2020.

[40] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan
Saltaformaggio, Xiangyu Zhang, andDongyanXu. 2016. LDX: Causality Inference
by Lightweight Dual Execution. In Proceedings of the Twenty-First International

Conference on Architectural Support for Programming Languages and Operating

Systems (Atlanta, Georgia, USA) (ASPLOS ’16). ACM, New York, NY, USA, 503–515.
https://doi.org/10.1145/2872362.2872395

[41] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan Lee,
ShiqingMa, Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela Ciocarlie, Ashish
Gehani, and Vinod Yegneswaran. 2018. MCI: Modeling-based Causality Inference
in Audit Logging for Attack Investigation. In Proc. of the 25th Network and

Distributed System Security Symposium (NDSS’18).
[42] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack

Provenance via Binary-based Execution Partition. In Proceedings of NDSS ’13 (San
Diego, CA).

[43] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. LogGC: Garbage
Collecting Audit Log. In Proceedings of the 2013 ACM SIGSAC conference on

Computer and Communications Security (Berlin, Germany) (CCS ’13). ACM, New
York, NY, USA, 1005–1016. https://doi.org/10.1145/2508859.2516731

[44] Jure Leskovec. 2009. SNAP: Stanford Network Analysis Project.
[45] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-

wan Rhee, and Prateek Mittal. 2018. Towards a Timely Causality Analysis for
Enterprise Security. In Proceedings of the 25th ISOC Network and Distributed

System Security Symposium (NDSS’18). San Diego, CA, USA.
[46] Sadegh M. Milajerdi, Birhanu Eshete, Rigel Gjomemo, and Venkat N. Venkatakr-

ishnan. 2018. ProPatrol: Attack Investigation via Extracted High-Level Tasks. In
Information Systems Security, Vinod Ganapathy, Trent Jaeger, and R.K. Shyama-
sundar (Eds.). Springer International Publishing, Cham, 107–126.

[47] Di Ma and Gene Tsudik. 2009. A new approach to secure logging. ACM Transac-

tions on Storage (TOS) 5, 1 (2009).
[48] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu Zhang,

and Dongyan Xu. 2015. Accurate, Low Cost and Instrumentation-Free Security
Audit Logging for Windows. In Proceedings of the 31st Annual Computer Security

Applications Conference (Los Angeles, CA, USA) (ACSAC 2015). ACM, New York,
NY, USA, 401–410. https://doi.org/10.1145/2818000.2818039

[49] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu Zhang, Gabriela
Ciocarlie, Ashish Gehani, Vinod Yegneswaran, Dongyan Xu, and Somesh Jha.
2018. Kernel-Supported Cost-Effective Audit Logging for Causality Tracking. In
2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX Association,
Boston, MA, 241–254. https://www.usenix.org/conference/atc18/presentation/
ma-shiqing

[50] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. 2017. MPI: Multiple Perspective Attack Investigation with Semantic Aware
Execution Partitioning. In 26th USENIX Security Symposium.

[51] ShiqingMa, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards Practical
Provenance Tracing by Alternating Between Logging and Tainting. In Proceedings
of NDSS ’16 (San Diego, CA).

[52] Emaad Manzoor, Sadegh M. Milajerdi, and Leman Akoglu. 2016. Fast Memory-
Efficient Anomaly Detection in Streaming Heterogeneous Graphs. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (San Francisco, California, USA) (KDD ’16). Association for Comput-
ing Machinery, New York, NY, USA, 1035–1044. https://doi.org/10.1145/2939672.
2939783

https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://www.carbonblack.com/global-incident-response-threat-report/november-2018/
https://www.carbonblack.com/global-incident-response-threat-report/november-2018/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chen_ang
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chen_ang
https://doi.org/10.1145/3035918.3035926
https://doi.org/10.1145/3035918.3035926
https://wiki.freebsd.org/DTrace
https://www.usenix.org/conference/usenixsecurity18/presentation/gao-peng
https://www.usenix.org/conference/usenixsecurity18/presentation/gao-peng
http://dl.acm.org/citation.cfm?id=2442626.2442634
http://dl.acm.org/citation.cfm?id=2442626.2442634
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_07B-1_Hassan_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_07B-1_Hassan_paper.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
http://dl.acm.org/citation.cfm?id=3277203.3277331
http://dl.acm.org/citation.cfm?id=3277203.3277331
https://doi.org/10.1145/1165389.945467
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://doi.org/10.1145/2872362.2872395
https://doi.org/10.1145/2508859.2516731
https://doi.org/10.1145/2818000.2818039
https://www.usenix.org/conference/atc18/presentation/ma-shiqing
https://www.usenix.org/conference/atc18/presentation/ma-shiqing
https://doi.org/10.1145/2939672.2939783
https://doi.org/10.1145/2939672.2939783

ACSAC 2020, December 7–11, 2020, Austin, USA Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wajih Ul Hassan, and Adam Bates

[53] P. McDaniel, K. Butler, S. McLaughlin, R. Sion, E. Zadok, and M. Winslett. 2010.
Towards a Secure and Efficient System for End-to-End Provenance. In Proceedings

of the 2nd conference on Theory and practice of provenance. USENIX Association,
San Jose, CA, USA.

[54] S. Momeni Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan.
2019. HOLMES: Real-Time APT Detection through Correlation of Suspicious
Information Flows. In 2019 2019 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA. https://doi.org/10.1109/SP.2019.00026

[55] MITRE. 2019. MITRE ATT&CK. https://attack.mitre.org. Last accessed October
16, 2020.

[56] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko,
Diana Maclean, Daniel Margo, Margo Seltzer, and Robin Smogor. 2009. Layering
in Provenance Systems. In Proceedings of the 2009 Conference on USENIX Annual

Technical Conference (San Diego, California) (USENIX’09). USENIX Association,
Berkeley, CA, USA, 10–10. http://dl.acm.org/citation.cfm?id=1855807.1855817

[57] Capital One. 2019. Information on the Capital One Cyber Incident. https://www.
capitalone.com/facts2019/. Last accessed October 16, 2020.

[58] Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Adam Bates, Christopher W.
Fletcher, Andrew Miller, and Dave Tian. 2020. Custos: Practical Tamper-Evident
Auditing of Operating Systems Using Trusted Execution. In 27th ISOC Network

and Distributed System Security Symposium (NDSS’20).
[59] Riccardo Paccagnella, Kevin Liao, Dave Tian, and Adam Bates. 2020. Logging

to the Danger Zone: Race Condition Attacks and Defenses on System Audit
Frameworks. In Proc. of the ACM Conference on Computer and Communications

Security (CCS).
[60] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers,

Margo Seltzer, and Jean Bacon. 2017. PracticalWhole-system Provenance Capture.
In Proceedings of the 2017 Symposium on Cloud Computing (Santa Clara, California)
(SoCC ’17). ACM, New York, NY, USA, 405–418. https://doi.org/10.1145/3127479.
3129249

[61] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei Wang, Zhiwei
Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. 2016. HERCULE: Attack
Story Reconstruction via Community Discovery on Correlated Log Graph. In
Proceedings of the 32Nd Annual Conference on Computer Security Applications

(Los Angeles, California, USA) (ACSAC ’16). ACM, New York, NY, USA, 583–595.
https://doi.org/10.1145/2991079.2991122

[62] D.J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. 2012. Hi-Fi: Collecting High-
Fidelity Whole-System Provenance. In Proceedings of the 2012 Annual Computer

Security Applications Conference (ACSAC ’12). Orlando, FL, USA.
[63] Rapid7. 2018. WordPress Admin Shell Upload.
[64] rebootuser. 2019. LinEnum.
[65] RedHat. 2019. Linux Audit.
[66] Michael Riley, Ben Elgin, Dune Lawrence, and Carol Matlack. 2019. Target Missed

Warnings in Epic Hack of Credit Card Data. https://bloom.bg/2KjElxM. Last
accessed October 16, 2020.

[67] Bruce Schneier and John Kelsey. 1998. Cryptographic Support for Secure Logs
on Untrusted Machines.. In Proc. of the USENIX Security Symposium (USENIX).

[68] Bruce Schneier and John Kelsey. 1999. Secure audit logs to support computer
forensics. ACM Transactions on Information and System Security (TISSEC) (1999).

[69] Gaurav Shah, Andres Molina, and Matt Blaze. 2006. Keyboards and Covert
Channels. In Proceedings of the 15th Conference on USENIX Security Symposium -

Volume 15 (Vancouver, B.C., Canada) (USENIX-SS’06). USENIX Association, USA,
Article 5, 17 pages.

[70] Symantec. 2019. About purging reports. https://help.symantec.com/
cs/SYMANTECEDR_4.0/EDR/v118097546_v128933990/About-purging-
reports?locale=EN_US.

[71] Yutao Tang, Ding Li, Zhichun Li,MuZhang, Kangkook Jee, XushengXiao, Zhenyu
Wu, Junghwan Rhee, Fengyuan Xu, and Qun Li. 2018. NodeMerge: Template
Based Efficient Data Reduction For Big-Data Causality Analysis. In Proceedings

of the 2018 ACM SIGSAC Conference on Computer and Communications Security

(Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 1324–1337. https:
//doi.org/10.1145/3243734.3243763

[72] Jordan Valinsky. 2020. Clearview AI has billions of our photos. Its entire client
list was just stolen. https://www.cnn.com/2020/02/26/tech/clearview-ai-hack/
index.html. Last accessed October 16, 2020.

[73] Fei Wang, Yonghwi Kwon, Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2018.
Lprov: Practical Library-aware Provenance Tracing. In Proceedings of the 34th

Annual Computer Security Applications Conference (San Juan, PR, USA) (ACSAC
’18). ACM, New York, NY, USA, 605–617. https://doi.org/10.1145/3274694.3274751

[74] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Jung-
whan Rhee, Zhengzhang Zhen, Wei Cheng, Carl A. Gunter, and Haifeng chen.
2020. YouAreWhat YouDo: Hunting StealthyMalware via Data Provenance Anal-
ysis. In 27th ISOC Network and Distributed System Security Symposium (NDSS’20).

[75] Yulai Xie, Dan Feng, Zhipeng Tan, Lei Chen, Kiran-Kumar Muniswamy-Reddy,
Yan Li, and Darrell D.E. Long. 2012. A Hybrid Approach for Efficient Provenance
Storage. In Proceedings of the 21st ACM International Conference on Information

and Knowledge Management (Maui, Hawaii, USA) (CIKM ’12).
[76] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Dan Feng, Yan Li, and Darrell D. E.

Long. 2013. Evaluation of a Hybrid Approach for Efficient Provenance Storage.
Trans. Storage 9, 4, Article 14 (Nov. 2013), 29 pages. https://doi.org/10.1145/
2501986

[77] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng
Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. 2016. High Fidelity Data
Reduction for Big Data Security Dependency Analyses. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security (Vienna,
Austria) (CCS ’16). ACM, New York, NY, USA, 504–516. https://doi.org/10.1145/
2976749.2978378

[78] Attila Altay Yavuz and Peng Ning. 2009. BAF: An efficient publicly verifiable se-
cure audit logging scheme for distributed systems. In Proc. of the Annual Computer

Security Applications Conference (ACSAC).
[79] Attila A Yavuz, Peng Ning, and Michael K Reiter. 2012. Efficient, compromise

resilient and append-only cryptographic schemes for secure audit logging. In
Proc. of the International Conference on Financial Cryptography and Data Security

(FC).

https://doi.org/10.1109/SP.2019.00026
https://attack.mitre.org
http://dl.acm.org/citation.cfm?id=1855807.1855817
https://www.capitalone.com/facts2019/
https://www.capitalone.com/facts2019/
https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1145/3127479.3129249
https://doi.org/10.1145/2991079.2991122
https://bloom.bg/2KjElxM
https://help.symantec.com/cs/SYMANTECEDR_4.0/EDR/v118097546_v128933990/About-purging-reports?locale=EN_US
https://help.symantec.com/cs/SYMANTECEDR_4.0/EDR/v118097546_v128933990/About-purging-reports?locale=EN_US
https://help.symantec.com/cs/SYMANTECEDR_4.0/EDR/v118097546_v128933990/About-purging-reports?locale=EN_US
https://doi.org/10.1145/3243734.3243763
https://doi.org/10.1145/3243734.3243763
https://www.cnn.com/2020/02/26/tech/clearview-ai-hack/index.html
https://www.cnn.com/2020/02/26/tech/clearview-ai-hack/index.html
https://doi.org/10.1145/3274694.3274751
https://doi.org/10.1145/2501986
https://doi.org/10.1145/2501986
https://doi.org/10.1145/2976749.2978378
https://doi.org/10.1145/2976749.2978378

	Abstract
	1 Introduction
	2 Background
	2.1 Audit Log Approximation

	3 Forensic Validity Metrics
	3.1 Lossless Forensics
	3.2 Causality-Preserving Forensics
	3.3 Attack-Preserving Forensics

	4 Design
	4.1 Overview
	4.2 Reduction Algorithm

	5 Implementation
	6 Evaluation
	6.1 Datasets
	6.2 Performance Evaluation
	6.3 Utility Evaluation
	6.4 Performance vs. Utility
	6.5 LogApprox Case Study

	7 Discussion
	7.1 Optimality of LogApprox
	7.2 Limitations of Attack Corpus
	7.3 Security Analysis of LogApprox

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

