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Abstract—Recently, provenance-based Intrusion Detection Sys-
tems (IDSes) have gained popularity for their potential in
detecting sophisticated Advanced Persistent Threat (APT) at-
tacks. These IDSes employ provenance graphs created from
system logs to identify potentially malicious activities. Despite
their potential, they face challenges in accuracy, practicality,
and scalability, particularly when dealing with large prove-
nance graphs. We present FLASH, a scalable IDS that leverages
graph representation learning through Graph Neural Networks
(GNNs) on data provenance graphs to overcome these limita-
tions. FLASH employs a Word2Vec-based semantic encoder
to capture essential semantic attributes (e.g., process names
and file paths) and the temporal ordering of events within
the provenance graph. Furthermore, FLASH incorporates a
novel adaptation of a GNN-based contextual encoder to ef-
ficiently encode both local and global graph structures into
expressive node embeddings. To learn benign node behaviors,
we utilize a lightweight classifier that combines the GNN
and Word2Vec embeddings. Recognizing the computational
demands and slow processing times of GNN, particularly for
large provenance graphs, we have developed an embedding
recycling database to store the node embeddings generated
during the training phase. During runtime, our lightweight
classifier leverages the stored embeddings, obviating the need
to regenerate GNN embeddings, thus facilitating real-time
APT detection. Extensive evaluation of FLASH on real-world
datasets demonstrates superior detection accuracy compared
to existing provenance-based IDSes. The results also illustrate
FLASH’s scalability, robustness against mimicry attacks, and
potential for accelerating the alert verification process.

1. Introduction

As cybersecurity threats evolve, Intrusion Detection Sys-
tems (IDSes) have become a critical part of enterprise
security strategies, particularly in combating Advanced Per-
sistent Threats (APTs). APTs, characterized by their stealthy
and persistent nature, as seen in infamous attacks, such as
Solar Winds [13] and NotPetya [10], pose severe challenges
due to their potential to cause significant system damage.
IDSes must detect these threats with high accuracy, maintain
low false positive rates, and consume minimal resources
without hindering system performance.

To enhance the ability of IDSes to combat sophisticated
intrusions, the cybersecurity field has turned to data prove-
nance. Data provenance analysis applied to system (audit)
logs enables parsing host events into provenance graphs,
which describe the entirety of system execution. Conse-
quently, provenance-based IDSes [30, 51, 66, 67, 69, 71]
have recently emerged as a promising approach to de-
tect intrusions, leveraging the rich contextual information
available in system logs to enhance detection performance.
However, in the complex context of enterprise security,
current provenance-based IDSes encounter the following
main limitations.

– Semantic Information Neglect: Existing IDSes com-
monly disregard valuable semantic data, such as process
names, command line arguments, file paths, and IP ad-
dresses in provenance graphs. This overlook can lead to
less accurate detection.

– Temporal & Causal Ordering Disregard: Several ID-
Ses overlook the importance of the temporal and causal
ordering of system events. This disregard could lead to
incorrect threat identification as it misses the sequence in
which malicious activities occur.

– Scalability Challenges: Real-time detection is crucial
for an effective IDS. However, several existing IDSes
face scalability issues, specifically when handling large
provenance graphs. This limits their real-time application,
causes log congestion, and leaves systems vulnerable to
ongoing attacks.

– Coarse-grained Detection: Many IDSes identify mali-
cious subgraphs rather than individual malicious nodes,
making alert validation and attack reconstruction both
time-consuming and error-prone for security analysts. Fur-
ther, this approach leaves these systems vulnerable to
evasion attacks [26].

In this work, we propose FLASH, a novel IDS that lever-
ages provenance graph representation learning to efficiently
and accurately detect APT attacks. To tackle the issue of
overlooking semantic information during detection, FLASH
employs a Word2Vec-based embedding technique to encode
various node attributes present in provenance graphs, such as
process names, command line arguments, file paths, and IP
addresses, into semantically-rich feature vectors. Moreover,
we modified our Word2Vec technique to obtain temporally
sensitive embeddings, addressing the issue of disregarding



temporal ordering among events. Our experiments demon-
strate that semantically-rich feature vectors that consider
temporal ordering among events more effectively distinguish
between benign and malicious nodes, reducing false positive
rates and enhancing overall detection performance.

To encode structural and causal information, we apply
graph representation learning by leveraging Graph Neu-
ral Networks. Graph representation learning through Graph
Neural Networks (GNNs) has the potential to learn expres-
sive node embeddings that capture both local and global
graph structures. However, existing GNN techniques are not
scalable and notoriously slow, particularly for large graphs,
rendering their application in the provenance-based IDS
domain prohibitively challenging and impractical [12, 73].

The challenge of scalability in GNNs to provide real-
time detection is handled by implementing two innovative
techniques. First, we enhance the efficiency of graph traver-
sal in graph representation learning by selecting only the
edges that are relevant for threat identification. Second, we
devised a GNN embedding database that is inspired by em-
bedding recycling techniques previously applied to language
models [59]. This database stores node embeddings during
the training process and during runtime, we employ these
pre-generated GNN embeddings for real-time detection, re-
ducing real-time processing time by over 70% compared to
state-of-the-art GNN-based IDS while maintaining superior
detection performance.

In addressing the challenge of coarse-grained detection,
FLASH conducts fine-grained anomaly detection by identify-
ing individual malicious nodes (e.g., processes and files) us-
ing GNN instead of the entire anomalous subgraph, contain-
ing benign nodes as well. Furthermore, our approach demon-
strates robustness against adversarial mimicry attacks on
provenance-based IDSes, as presented by Goyal et al. [26].
After detection, FLASH aids in threat management and
attack reconstruction by ranking threat alerts using FLASH-
generated anomaly scores and creating Attack Evolution
Graphs (AEGs). These AEGs, comprising only alert nodes
and their causal links, offer a concise intrusion progression
view compared to the raw provenance graph.

We evaluated the effectiveness and efficiency of FLASH
through a series of experiments conducted on real-world
datasets provided by DAPRA and the research community.
To the best of our knowledge, this is the first attempt to
evaluate a provenance-based IDS on the DAPRA OpTC
dataset, which is the largest system log dataset released by
DARPA to date. These datasets encompass a broad spectrum
of attack scenarios and system behaviors.

Our results reveal that FLASH surpasses existing
provenance-based IDSes in terms of detection rate. By
employing our GNN embedding database, we managed to
significantly reduce the time overhead for anomaly detec-
tion, demonstrating an improvement of up to three times
compared to existing state-of-the-art provenance-based IDS.
Furthermore, by using anomaly scores generated by FLASH
for threat alerts, security analysts can effectively triage alerts
and reduce their workload by up to 60%, indicating the
potential of FLASH in managing threat alert fatigue [1].

Our work’s main contributions are:
• We propose a provenance-based IDS, FLASH, which har-

nesses contextual and structural information from prove-
nance graphs to enhance its detection capabilities.

• We introduce a two-step process to generate semantic and
contextual embeddings using Word2Vec and GNN, re-
spectively. This process is followed by real-time anomaly
detection through a lightweight classifier model, ensuring
system scalability and efficiency.

• We offer two schemes – selective graph traversal and
embedding recycling database – that make graph repre-
sentation learning practical for IDS settings.

• We conduct a comprehensive evaluation of our technique
on real-world datasets. The results highlight FLASH’s
effectiveness in identifying malicious activities, its re-
silience against adversarial mimicry attacks, and its ability
to accelerate the alert validation process.

Availability. FLASH is available online at
https://github.com/DART-Laboratory/Flash-IDS

2. Motivation

In this section, we present a real-world attack scenario
from the DAPRA OpTC [4] dataset to highlight the limita-
tions of existing provenance-based IDSes and demonstrate
the effectiveness and utility of FLASH. The experimental
setup used for FLASH is described in Section 5.
Attack Scenario. In the given attack scenario, the at-
tacker sends phishing emails to targeted victims. These
emails contain malicious PowerShell Empire stagers. Upon
opening the email attachment, the attacker gains access to
the victim’s system. The attack agent then establishes a
connection to the command and control (C&C) server and
covertly remains in the system for several days. The agent’s
objective is to examine the system configuration and search
for sensitive data. To maintain stealth, the attacker carries
out minimal system activity and imitates the behavior of
benign system entities. Once the agent locates the desired
files, it downloads a payload from the command server and
exfiltrates the data to the server.

Figure 1 presents a simplified depiction of the attack
scenario described above. This particular attack was exe-
cuted as part of a DAPRA red team exercise during the
data collection process. The red team installed a C&C agent
on the system, which used find.exe to search for critical
files and gather system information. The attack agent then
downloaded a program called fileTransfer1000.exe via
Chrome.exe from news.com:8080. This program com-
pressed files in the documents directory and exfiltrated
them to news.com:9999. This is a typical example of a
data exfiltration attack, in which the attacker aims to steal
sensitive information from the target system while remaining
undetected by mimicking benign system processes.

2.1. Limitations of Existing Provenance IDSes

Existing provenance-based intrusion detection systems
(IDSes) primarily function by learning benign behavior

https://github.com/DART-Laboratory/Flash-IDS
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Figure 1: Example of a data exfiltration attack provenance graph from the DARPA OpTC dataset. The attack sequence involves the
attacker scanning for sensitive files within the system and transmitting them to a command server. FLASH effectively identified all key
attack components, represented by red nodes in the figure.

TABLE 1: Limitations of existing provenance-based intrusion de-
tection systems. ”-” denotes instances where we could not confirm
the results from the corresponding paper.
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FLASH ✓ ✓ ✓ Node ✓ ✓
ThreaTrace [67] X X X Node ✓ ✓
Unicorn [30] X ✓ ✓ Graph X X
ProvDetector [66] X X X Graph X X
StreamSpot [51] X X ✓ Graph X X
ProGrapher [69] X ✓ ✓ Graph X -
ShadeWatcher [71] ✓ X X Edge ✓ -

models from provenance graphs. Anomalies are detected
whenever deviations from these established models occur.
For instance, ProGrapher [69] utilizes Graph2Vec [56] and
TextRCNN [44] embeddings to identify anomalies at the
graph level. Similarly, StreamSpot [51] extracts graph fea-
tures to construct benign models and leverages a clustering
technique to discern abnormal graphs. Unicorn [30], on the
other hand, employs a graph similarity matching method
to locate abnormal graphs. It simplifies provenance graph
features into histograms and forms fixed-size graph sketches,
which it then clusters to detect anomalies. ProvDetector [66]
adopts a path-based strategy for malware detection. It iden-
tifies infrequent paths in a graph, uses path embedding
generation, and employs the Local Outlier Factor [9] method
for anomaly detection. ThreaTrace [67] uses GNN to exe-
cute node-level anomaly detection, learning the structural
information of nodes in the benign dataset and identifying
anomalies based on deviations from this learned behavior.
Finally, ShadeWatcher [71] uses GNN to depict a system
entity’s preferences towards interactive entities, suggesting
adversarial interactions through edge-level anomaly detec-
tion. Despite these advancements, current provenance-based
IDSes are hindered by several limitations that impact their
practical applicability in real-world settings. These limita-
tions are described below and summarized in Table 1.

Semantic Encoding. Existing provenance-based IDSes
utilize ML algorithms to detect system attacks based on
the distribution of system events for each node as feature
vectors. However, these systems often fail to consider crucial

semantic attributes, such as process names, command lines,
or file paths. This oversight can lead to a high rate of false
positives, as distinguishing between benign and malicious
entities becomes increasingly difficult. For instance, con-
sider the attack graph presented in Figure 1. Each node
contains semantic attributes that help to establish the sur-
rounding context. The firefox.exe node labeled R1 is a
benign system node, while the Chrome.exe node labeled
R2 is under the attacker’s control. If we remove the se-
mantic attributes from these two nodes, their activities look
identical. In typical provenance graphs, such instances could
be numerous. Therefore, semantic attributes are crucial for
reducing false alarms and helping the detector to better
understand and discriminate between malicious and benign
nodes based on their activities.

Temporal Encoding. Existing provenance-based IDSes
do not consider the temporal ordering of system events,
focusing instead solely on event frequency per node. This
approach limits the model’s understanding of benign node
distributions, given that several nodes can perform the same
events in varying orders. This oversight results in elevated
false alarms. Our experimental results, as detailed in Sec-
tion 5, demonstrate a significant decrease in false positives
when temporal ordering is incorporated, in comparison to a
baseline that disregards temporal factors.

Scalability. Several existing provenance-based IDSes uti-
lize GNN to extract structural information from provenance
graphs, which improves detection by capturing the rela-
tionships between neighboring nodes. However, the high
computational demands of GNN can hinder the scalability of
the system and complicate real-time intrusion detection [73].
FLASH, on the other hand, implements scalability enhance-
ment techniques for GNN that result in significantly faster
performance (as shown in Figure 3) compared to existing
systems that do not utilize these techniques.

Detection Granularity. The degree of granularity in graph-
based detection plays a significant role in the effectiveness
of IDSes. Many existing IDSes like StreamSpot and Unicorn
use graph-level anomaly detection, which struggles to iden-
tify stealthy attacks with minimal activity. For example, in
Figure 1, the attack involved just 0.02% of the total nodes,
causing the graph to look largely normal. Such methods also
fail to accurately pinpoint anomalous nodes, leading to lower
detection rates than node-level systems, such as ThreaTrace.
Systems like ProvDetector trigger alerts based on anomalous



path thresholds, providing a coarse-grained detection. Con-
versely, Shadewatcher detects anomalous edges, a more de-
tailed but slower approach that restricts it to offline detection
due to the sheer number of potential edges. Therefore, node-
level detection strikes the optimal balance between detail
and speed.
Contextual Alerts. IDSes with graph-level granularity
identify potentially malicious subgraphs rather than pin-
pointing the exact malicious nodes (e.g., processes and files)
responsible for threat alerts. As security analysts have to
determine the veracity of each IDS-generated threat alert
by understanding the context around the alert, this leads
to a time-consuming and error-prone process of attack re-
construction and alert validation. In such cases, a security
analyst must thoroughly analyze the marked subgraph to find
potentially malicious nodes. On the other hand, node- and
edge-level detection methods provide improved efficiency
for investigations after an attack by directly pointing to the
exact entities involved in the intrusion and data provenance
around that entity.
Robustness Against Mimicry Attacks. Goyal et al. [26]
introduced a methodology to evade IDSes that operate at
the graph and path level granularity. Their approach ma-
nipulates the distributional graph encoding, modifying the
node neighborhoods in the attack graph to mimic those in
benign provenance graphs. When we applied the adversarial
attack strategy as defined by Goyal et al. on our proposed
system (as detailed in Section 5), we found our system to
be resistant to such evasion attempts. This resistance affirms
that node-level detection methods, such as the one used by
FLASH, offer better protection against evasion attacks due to
their ability to identify anomalies at a more granular level.

3. Threat Model & Assumptions

To build a comprehensive threat model, we make several
assumptions about the attacker’s behavior and the system’s
characteristics. We assume that attackers are covert and
actively conceal their malicious actions by blending them
with legitimate background data. This approach makes it
challenging to identify malicious activity and differentiate
it from benign behavior. Moreover, attackers may use zero-
day exploits to target the system, implying that there are
no known attack patterns available for training. This lack of
prior knowledge poses a significant challenge to developing
effective detection techniques.

In our threat model, we assume that attackers must leave
behind identifiable patterns in the system’s records to carry
out malicious activities distinct from typical behavior. These
patterns will differentiate the structure of the attacker’s
node from those of legitimate nodes with the same label.
By analyzing the graph structure and the features of the
nodes, we can identify unusual entities corresponding to
the attacker’s behavior and track them over time. Similar
to other data provenance works [19, 33, 47, 49], we assume
that the provenance collection system provides accurate and
complete records of all activities and changes occurring in
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Figure 2: FLASH architecture. FLASH uses Word2Vec and GNN
to learn semantic and contextual embeddings from the provenance
graphs. After that, FLASH uses a downstream classifier to learn
benign behaviors from those embeddings.

the computer system. Moreover, we assume that the integrity
of the collected audit logs and the embedding recycling
database is maintained all the time by using existing tamper-
resistant storages [14, 57]. This ensures that the provenance
graphs constructed by FLASH are reliable and can be used
effectively for detecting and analyzing cybersecurity threats.

4. FLASH Design

FLASH, illustrated in Figure 2, is composed of five
key modules: a provenance graph constructor, a Word2Vec-
based semantic encoder, a GNN-based contextual encoder,
an embedding database, and an anomaly detector. At a high-
level, FLASH generates provenance graphs from streaming
system logs, uses semantic attributes to create feature vec-
tors for nodes, and applies GNN for context-aware encoding.
These embeddings are stored in a database and later used
by a lightweight classifier during threat detection.

4.1. Provenance Graph Construction

Our system begins with the transformation of system
logs into provenance graphs, depicted in Figure 2. This
graph construction process is rooted in existing provenance
graph research [20, 32, 33, 36, 42, 48]. It involves three
primary steps. First, FLASH interprets system logs such as
Windows Event Logs [7] or Linux Audit Logs [8]. These
logs consist of host event records like process executions,
file operations, and network connections. In the next step,
FLASH manages real-time log collection by processing sys-
tem logs in configurable batches. The batch size K sets the
number of system events per batch. FLASH then sequen-
tially operates on each log batch and transforms it into a
provenance graph for subsequent analysis.

Finally, FLASH uses the parsed data to construct the
provenance graph, comprising two node types: process



nodes and object nodes. Object nodes encompass files,
network flows, modules, and other system objects. Edges
between these nodes bear labels specifying the event type
(system calls), which demonstrate the causal relationship
between connected nodes and the timestamp of the event.
Further, nodes contain attributes, such as process name,
command line, file path, IP address, port numbers, and
module path, providing further context and details.

4.2. Semantic Attribute Encoding

The system logs contain rich attributes related to various
system entities. These attributes, such as process names and
file paths, first need to be encoded into vector space so that
they can be utilized by the model. Some traditional methods
of doing this would be one-hot encoding [11] and bag of
words [2] approach. However, these methods lead to very
sparse vectors which do not take into account the context
around each word in the document.

To overcome these limitations, we apply the Word2Vec
model [53] to translate these attributes into a dense vector
space. Word2Vec, a neural network-based approach, excels
at learning word vector representations. It operates on the
principle of predicting a word’s context with a shallow neu-
ral network. This approach yields a low-dimensional dense
vector for each word, where similar words carry similar vec-
tor representations. Our model considers the following node
attributes per node type: process name and command line
arguments for process nodes, file path for file nodes, network
IP address and port for socket nodes, and module name
for module nodes. This data helps generate semantically-
rich feature vectors. We form summary sentences for each
node by combining semantic attributes and the types of
causal events (system calls) between nodes and their 1-
hop neighbors. System events are sorted by timestamps to
maintain temporal ordering. Each sentence is then encoded
into a fixed-length vector through a Word2Vec model trained
on benign system logs.

Our method captures semantic relationships between
words, generating dense embeddings that provide node fea-
tures for subsequent graph representation learning. This
comprehensive feature set complicates the mimicry of be-
nign nodes by malicious ones. For successful mimicry, ma-
licious nodes must duplicate system activity, temporal order,
and semantic attributes. This improved detection ability
allows our model to spot otherwise overlooked malicious
activities. Algorithm 1 outlines the process for generating
semantic embedding vectors.

4.2.1. Temporal Encoding. The standalone Word2Vec
model has a key limitation: it does not retain the sequential
order of words in a sentence. To rectify this and enhance
our model’s expressiveness, we devise a temporal encod-
ing scheme that assigns individual weights to each word
embedding. These weights, accumulated over a sentence,
yield an embedding enriched with temporal information.
We initiate this approach by arranging system events in
chronological order based on timestamps, facilitating the

Algorithm 1: NODESENTENCEEMBEDDINGS
Inputs : Provenance Graph G;

Trained Word2Vec Model w2v;
Output: Array V of sentence encoding.

1 D ← list([])
/* Iterating over neighbors of the node */

2 foreach N ∈ G do
/* Getting the syscall performed on this node

*/
3 A = GETACTIONPERFORMED(N )

/* Getting node properties like process name,
file path, command line, etc. */

4 S = GETNODEATTRIBUTES(N )
/* Concatenating the words into a list */

5 D.append(A)
6 D.append(S)
7 end
/* Initializing the embedding vector */

8 V ← list([])
/* Iterating over words of document D */

9 foreach w ∈ D do
/* Getting Word2Vec embeddings for this word */

10 E = w2v(w)
11 V.append(E)
12 end

/* Giving weight to each index of the vector V to
capture the temporal order of system events */

13 P = GETPOSITIONALECONDINGVECTOR( len(V ) )
14 V ← V + P

/* Averaging the embeddings for all words to get
one vector for the complete sentence. */

15 V ← V.mean()
16 return V

integration of temporal ordering into our sentences. Sub-
sequently, we incorporate positional encoding, a concept
borrowed from Transformers [65], into the input embeddings
to convey information about the position of each token in
the sequence. This inclusion is crucial as Word2Vec lacks
a built-in concept of order, so positional encoding allows
the model to distinguish tokens based on their sequence
position. The positional encoding vector for a token at
position i is given by:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
PE(pos,2i+1) = cos

( pos

100002i/dmodel

) (1)

where d represents the dimensionality of the embedding,
and j is the index of the dimension within the embedding.

The positional encoding vector is then added to the
Word2Vec embedding vector for each token at that position.
This operation is performed element-wise, resulting in the
embedding for a token at position i being:

Embi = Embi + PEi (2)

By combining the Word2Vec embeddings with positional
encoding, our model can capture not only the semantic
associations between words but also the order of words in
the summary sentence. This enriched representation allows
the GNN in the next step to better understand the context
and detect malicious activities that might have previously
gone undetected.



4.3. Provenance Graph Representation Learning

The efficient identification of stealthy attack nodes in
provenance graphs necessitates the encoding of the k-hop
neighborhood structure surrounding each node. The current
state-of-the-art method for achieving this feat is graph repre-
sentation learning via Graph Neural Network (GNN). GNN
is adept at learning low-dimensional vector representations
of nodes in a graph, thereby effectively capturing their
structural information using the connections between nodes.

In our approach, we harness the Word2Vec embeddings
acquired from the previous step as feature vectors for the
nodes in our GNN. The GNN employs these features in
conjunction with the graph structure to learn the structural
information of each node in the provenance graph. However,
employing graph representation learning can pose significant
resource overhead and introduce higher latency, particularly
in large graphs [73], due to the message-passing process.
Message passing entails nodes exchanging information with
their neighbors in the graph, which is iteratively repeated
to enable nodes to receive information from increasingly
distant parts of the graph. Consequently, leveraging GNN
continuously during live intrusion detection would not only
be resource-intensive but also lead to scalability issues, as
provenance graphs in enterprise settings are immense [32,
47]. In order to tackle the aforementioned challenge and
make GNN practical for provenance-based IDS, we employ
two techniques, which are elaborated below.

We run GNN in an offline manner to generate contex-
tual embeddings, which are subsequently stored for later
utilization by a lightweight classifier model. We observed
that a vast majority of system entities perform the same
set of activities during each system execution, rendering it
inefficient to run the GNN for them every time they are
encountered. Our meticulous analysis of the DAPRA OpTC
dataset revealed that over 80% of system entities exhibit
the same neighborhood structure in both the benign and
evaluation phases of system execution. By storing the GNN
output for these nodes, we can avoid using the GNN for
approximately 80% of the time while FLASH operates in
real-time. We provide a detailed description of our embed-
ding database in Section 4.4.

4.3.1. Selective Graph Traversal. Our GNN model takes
inspiration from the GraphSage framework [28], recognized
for its ability to learn node embeddings. GraphSage em-
ploys a neighborhood aggregation method, capturing local-
ized information about nodes. However, to ensure efficient
processing of the large provenance graph with relevance
to threat detection, we have adapted the graph traversal
algorithm of GraphSage. This adaptation gives priority to the
edges that are important for threat detection and investiga-
tion, removing the necessity for complete provenance graph
traversal. To accomplish this, we have devised a series of
graph traversal principles. These principles guide GraphSage
to selectively aggregate information from particular edges
before applying GNN. We utilize the following traversal

principles (TPs) to determine which nodes and edges should
be included during aggregation.
• TP1: Unique Edge Sampling: In this traversal principle,

we sample only a single edge of the same type between
two nodes. Given that the provenance graph can contain
multiple edges of the same type between nodes, we ensure
that such edges are included only once during traversal.

• TP2: Low-Priority Event Exclusion: This principle in-
volves excluding edges that represent low-priority and
forensically irrelevant system events. Such events may in-
clude delete events for files that were created temporarily
by a process and never interacted with other processes dur-
ing system execution, as well as exit events represented as
self-loops for process nodes. Previous works [34, 37, 46]
have also employed similar approaches to reduce noise in
system logs.

• TP3: Execution-Specific Information Filtering: In this
principle, we include nodes and edges with the same
execution-specific information only once. Many neighbor-
ing nodes in the provenance graph may only differ due
to execution-specific attributes but are otherwise identical.
Examples include process nodes with the same image path
but differing PIDs, module nodes with the same module
path but different base addresses, and network flows with
the same 4-tuple but different start and end times.

• TP4: User-Specific Attribute Handling: Here, we treat
nodes or edges differing only in user-specific attributes
as the same. Certain events and nodes in the provenance
graph may differ only due to user-specific information in
their attributes. For example, two modules with the same
module path could differ if they have different user IDs
in their path. For such nodes, we ignore the user-specific
attributes and select only one of them.

This set of principles allows us to reduce the com-
putational overhead of running GNN on the complete
provenance graph while still producing informative and
structurally-rich vector representations for nodes. During
aggregation, we generate structural embeddings for a given
graph G = (V,E) where V is the set of nodes and E is
the set of edges. For each node v ∈ V , let Xv be the input
feature vector for that node, and let h(0)

v = Xv be the initial
embedding. At each iteration k of the algorithm, GraphSage
updates the embeddings for each node v ∈ V using the
following equation:

h(k)
v = σ

(
W (k) · AGGREGATEk(h

(k−1)
u : u ∈ N (v) ∪ v)

)
where σ(·) is a non-linear activation function such as

ReLU, N (v) is the set of neighbors of node v in the
graph, and AGGREGATEk(·) is an aggregation function that
combines the embeddings of node v and its neighbors at
iteration k. The matrix W (k) is a learnable parameter matrix
that maps the aggregated features to the new embedding
space. Following this procedure, the GraphSage can encode
the structural information around each node to vector space.

4.3.2. Training & Weighted Cross-Entropy Loss. We
employ a semi-supervised node classification approach to



train our novel GNN model. Our model uses the node’s input
features and graph structure to classify its type. Our prove-
nance graphs include several node types, such as process,
file, and socket. The GNN model, trained with labeled data,
learns to identify benign nodes’ types. As the node types in
the system logs are typically imbalanced, we use weighted
cross-entropy as our loss function. Weighted cross-entropy
loss is a variant of the cross-entropy loss function, which is
used when the classes in the data are imbalanced. Weighted
cross-entropy loss addresses this issue by assigning a weight
to each class that reflects its importance. Typically, the
weight for each class is set to be inversely proportional
to the frequency of samples in that class. This approach
ensures that the loss function pays greater attention to the
minority classes, thereby enhancing the model’s competence
in correctly classifying those classes. The equation for the
weighted cross-entropy loss is:

L(y, f(x)) = −
n∑

i=1

(wiyi log(f(x)i)+(1−yi) log(1−f(x)i))

where y is the true label vector, f(x) is the predicted
label vector, n is the number of classes, wi is the weight for
the i-th class, and log is the natural logarithm. By training
our GNN model with this loss function, we ensure that
it can effectively learn the structural relationships between
different node types in the provenance graph. Once the
model is trained, the embeddings it generates can be used
as input to a lightweight classifier for real-time intrusion
detection. As a result, our FLASH system can efficiently
identify stealthy attack nodes by leveraging the power of
GNN and a lightweight classifier, without the need for
continuous GNN execution during live intrusion detection.

4.4. Embedding Recycling Database

Our system employs the trained GNN model to generate
structural embeddings for all nodes present in our benign
dataset. For efficient retrieval and storage of these GNN
output vectors during real-time threat detection, we architect
a specialized key-value store. The key is designed as a
Persistent Node Identifier (PNI), tied to node attributes that
remain invariant across distinct system executions. These
include process names, file paths, module paths, and network
flow IP addresses. The corresponding value encapsulates the
GNN-derived embedding, together with a set of neighbors
associated with that specific node.

To derive a PNI, we utilize attribute abstraction tech-
niques to remove user- and execution-specific information.
This ensures that the stored embeddings are generalizable
and adaptable to provenance graphs across various hosts
within the enterprise. To facilitate our abstraction process,
we group provenance node types into different abstraction
schemas, which are described below.
– User Abstraction Schema: Implemented for process

and file node types, this schema omits user IDs
from process names and file paths, achieving a

high degree of generalization. For instance, the
file path /Users/john/.bashrc is abstracted to
/Users/*/.bashrc. This abstraction mechanism allows
our system to leverage the embeddings of similar
behaviors across multiple users, significantly improving
its ability to detect anomalous patterns.

– Network Connection Abstraction Schema: Applied to
socket node types, this schema eliminates start and
end times, which results in enhancing generaliz-
ability across different system executions, helping
our system to focus on the structural and behav-
ioral aspects of the nodes. For example, a socket
node with attributes IP:192.168.1.10, Port:22,
Start: 12:00:00, End: 12:10:00 is abstracted to
IP:192.168.1.10, Port:22, encapsulating only es-
sential connection information.

– Module Path Abstraction Schema: Module nodes have a
path and base address attribute. The path persists across
different executions while the base address changes. This
schema retains only the module paths, ensuring a consis-
tent and generalizable representation of module nodes.

4.4.1. Harnessing Pre-computed Embeddings. The moti-
vation behind the construction of our embedding key-value
database is twofold: optimizing real-time anomaly detection
and reducing computational overhead. By pre-computing
and storing the GNN embeddings for nodes with a stable
neighborhood structure, our approach rapidly assigns stored
embeddings to nodes with matching neighborhood structures
during the real-time detection phase, enhancing the perfor-
mance and scalability of our detection pipeline.

In this setup, the neighborhood set serves a pivotal
function. It is instrumental in determining whether a node’s
neighborhood structure during real-time analysis matches
that observed during the benign phase. In the event of a
match, the node is immediately assigned the stored embed-
ding from the key-value store. On the other hand, if there
is a discrepancy in the neighborhood structures, the model
will default to real-time generated Word2Vec features for
anomaly detection. This balanced strategy ensures our sys-
tem’s computational efficiency and adaptability to structural
changes in the network.

We use the Jaccard Index to compare the stored and
current neighborhood of a node before assigning it the pre-
stored GNN embeddings. The Jaccard index is defined as
J(A,B) = |A∩B|

|A∪B| where A and B are sets, and |A| and
|B| denote their cardinalities. The Jaccard index measures
the similarity between two sets by calculating the ratio of
the size of their intersection to the size of their union. The
Jaccard Index is a simple metric and easy to compute. It
is commonly used with binary data where the presence or
absence of specific elements is important. Furthermore, it is
known to be relatively robust for imbalanced datasets, where
one set is significantly larger than the other.

During the real-time detection phase of FLASH, a node
must fulfill the following two conditions before it can be
assigned its stored GNN embeddings:



1) The PNI for the node must be present as a key in the
feature store.

2) The stored neighborhood set corresponding to this PNI
in the feature store must have a Jaccard index of 1 with
the current neighborhood set of the given node.

If a node satisfies the above conditions, it is assigned
the stored GNN embeddings; otherwise, FLASH relies on
Word2Vec features for classifying that node using our
lightweight classifier.

4.5. Lightweight Classifier

In our search for the optimal lightweight classifier, we
evaluated numerous candidates including XGBoost, Support
Vector Machines (SVM), and Random Forest. As detailed
in Section 5, XGBoost consistently outperformed other clas-
sifiers, showcasing superior speed and accuracy. Thus, we
chose XGBoost for our anomaly detection task. XGBoost
uses an ensemble of decision trees and advanced boosting
techniques for enhanced accuracy. It predicts the proba-
bility of sample classification using the function f(x) =∑K

k=1 fk(x), where fk(x) = sigmoid(αkTk(x)). Here,
Tk(x) is the prediction of the k-th tree, and αk determines
the tree’s contribution.

XGBoost minimizes the regularized objective function
J = L(y, f(x))+Ω(f), using gradient boosting to iteratively
add new trees to the ensemble. Each new tree aims to
minimize the gradient of the loss function against the current
ensemble predictions. The XGBoost model uses the con-
catenated Word2Vec encoding vectors and GNN embedding
vectors per node. It retrieves GNN embeddings from the
pre-trained key-value store, generates Word2Vec features in
real-time, performs inference, and saves the output for the
next pipeline stage. This robust process underpins our IDS’s
performance and scalability. The detailed algorithm is in
Appendix D.

FLASH detects anomalous nodes by comparing predicted
and actual node types. The model considers both neighbor-
hood structure and node attributes to learn benign patterns
associated with various node types. For instance, it can
generalize interactions between different processes and file
types, as well as their connections. Malicious entities often
exhibit neighborhood structures and attributes that deviate
from benign patterns. As a result, when the model encoun-
ters such outliers during runtime, they do not fit into the
learned distribution of nodes, leading to misclassification.

Leveraging Word2Vec features and stored GNN embed-
dings, FLASH predicts system entity (node) types. Misclas-
sified nodes from the output indicate potential threats. We
introduce a threshold parameter T to control alert gener-
ation. This parameter limits classification probability for
the predicted class, reflecting the model’s confidence in its
prediction. Higher scores imply more confidence and likely
anomalies.

Algorithm 2: Attack Evolution Graph Generation
Inputs : Graph G(V,E); Alerts N ; Hop length h
Output: AEG Graphs List IG

1 ListG ← []
2 foreach Alert n ∈ N do
3 Paths ← GETCAUSALPATHS(n, h)

// List to store paths containing alert nodes
4 AttackPaths ← []
5 foreach P ∈ Paths do
6 AlertNodes ← P ∩N
7 if len(AlertNodes) > 1 then
8 CompactPath ← KEEPALERTNODESONLY(P )
9 AttackPaths ← AttackPaths + CompactPath

10 end
11 end
12 ListG.append(AttackPaths)
13 end
14 IG ← []
15 foreach Pathlist ∈ ListG do

// Connect all paths originating from an alert
node n to construct a graph.

16 AEGraph ← ConvertToGraph(Pathlist)
17 IG ← IG + AEGraph
18 end
19 return IG

4.6. Attack Evolution Graph Construction

Given that the generated alerts may be dispersed
throughout a large provenance graph, understanding causal
relations between nodes necessitates numerous backward
and forward tracing calls for analysts to investigate alerts.
Additionally, different stages of APT attacks are scattered
across the provenance graph, making it challenging to iden-
tify their relationships and progression.

To tackle these challenges, we introduce a scheme to
construct compact Attack Evolution Graphs (AEG) from the
large provenance graph and alerts generated by FLASH. The
central concept is to interlink causally related alerts within
the provenance graph, consequently constructing a series of
concise AEGs. These AEGs encapsulate only alert nodes
and their causal links, providing a streamlined and clear
view of alert node interactions. This reduction significantly
simplifies the original graph, making it easier for analysts to
grasp the attack progression swiftly and effectively. These
condensed AEGs not only streamline the analysis of the
provenance graph but also provide a powerful tool for
analysts to rapidly correlate different stages of APT attacks.
This correlation offers a clear view of the overall attack
strategy and tactics, helping incident response.

Algorithm 2 explains the procedure for creating AEGs.
The algorithm takes a provenance graph G(V,E) and a set
of alerts N with hop length h. It then returns a list of AEGs.

5. Evaluation

To thoroughly evaluate FLASH, we address the following
research questions. All experiments were performed on a
machine equipped with 8 Intel vCPUs, 80 GB RAM, an
NVIDIA RTX2080 GPU, and Ubuntu 18.04.6 LTS. For our
experiments, we use an event batch size of 250k and Jaccard
Similarity threshold of 1.



TABLE 2: Comparison of FLASH against ThreaTrace using only the GNN as the anomaly detector and using a GNN embeddings
database along with a lightweight classifier. Prec.: Precision; Rec.: Recall;

Datasets
ThreaTrace FLASH (GNN) FLASH (GNN + XGBoost)

Prec. Rec. F-Score TP/ FP/ FN/ TN Prec. Rec. F-Score TP/ FP/ FN/ TN Prec. Rec. F-Score TP/ FP/ FN/ TN

Cadets (E3) 0.90 0.99 0.95 12848/ 1361/ 4/ 705,605 0.94 0.99 0.96 12851/ 818/ 1/ 706,148 0.95 0.99 0.97 12851/ 720/ 1/ 706,246
Trace (E3) 0.72 0.99 0.83 67382/ 26774/ 1/ 2,389,233 0.95 0.99 0.97 67382/ 3477/ 1/ 2,412,530 0.95 0.99 0.97 67382/ 3805/ 1/ 2,412,202
Theia (E3) 0.87 0.99 0.93 25297/ 3765/ 65/ 3,501,561 0.92 0.99 0.95 25318/ 2282/ 44/ 3,503,044 0.93 0.99 0.96 25318/ 1875/ 44/ 3,503,451

Fivedirections (E3) 0.67 0.92 0.78 389/ 188/ 36/ 569,660 0.72 0.93 0.81 395/ 150/ 30/ 569,698 0.70 0.93 0.80 395/ 170/ 30/ 569,678
OpTC (Attack 1) 0.84 0.85 0.84 53/ 10/ 9/ 552,491 0.91 0.94 0.92 58/ 6/ 4/ 552,495 0.90 0.92 0.91 57/ 6/ 5/ 552,495
OpTC (Attack 2) 0.85 0.87 0.86 358/ 64/ 52/ 553,066 0.92 0.94 0.93 387/ 32/ 23/ 553,098 0.94 0.92 0.93 378/ 22/ 32/ 553,108
OpTC (Attack 3) 0.86 0.87 0.86 155/ 25/ 23/ 181,699 0.92 0.92 0.92 163/ 15/ 15/ 181,709 0.92 0.93 0.92 165/ 15/ 13/ 181,709

• RQ1. How does FLASH detection accuracy compare to
the existing systems?

• RQ2. How does FLASH’s GNN optimizations enhances
the performance?

• RQ3. How does the batch size parameter affect FLASH’s
performance, accuracy, and resource usage?

• RQ4. How robust is FLASH against mimicry attacks?
• RQ5. What are the results of the ablation study on various

FLASH components and hyperparameters?
• RQ6. How effectively does FLASH assist in the alert

validation process?

Implementation. Our FLASH tool is built using Python,
with around 5K lines of code. We employ the Torch Geo-
metric library for our GNN model. This model uses Sage
Convolutions, a type of graph convolution layer. It combines
neighboring nodes’ features to create new node representa-
tions. The model also includes dropout and ReLU activation
functions between the layers to improve generalization. We
use the XGBoost library for our XGBoost classifier and
the Gensim library for our Word2Vec model. We have
written Python functions to build the provenance graphs,
filter unnecessary information, and abstract node entities.
This helps us preprocess the raw graph and makes it suitable
for our GNN model.
Datasets. FLASH was evaluated using four open-
source datasets: DAPRA E3 [3], DAPRA OpTC [5],
StreamSpot [51], and Unicorn [30]. The E3 dataset1 is from
DAPRA’s third red-vs-blue team exercise. It provides audit
log data that show both benign and attack behaviors. We
label the OpTC attack events using ground truth document
from DAPRA. For E3, we utilize labels from ThreaTrace.
For identifying attack graphs in StreamSpot and Unicorn
datasets, we refer to their respective documentation. The
DAPRA OpTC dataset presents a wide view with benign and
malicious audit records from about 1000 hosts. This dataset
has six days of benign activities for training, and the next
three days detail malicious activities for evaluation. Each
of these three days shows a different type of attack. Day
one maps a PowerShell Empire staging scenario, including
initial foothold, lateral movements, and privilege escalations.

1. Several existing IDSes have only utilized partial datasets from E3.
For example, ShadeWatcher only uses the Trace dataset. This approach
can lead to a sampling bias pitfall, as highlighted by Arp et al. [18].

Day two documents data exfiltration events. The third day
records malicious software upgrades.

The StreamSpot dataset includes information flow
graphs from one attack and five benign scenarios. Likewise,
the Unicorn dataset contains simulated APT supply-chain
attacks with a mix of benign and attack system graphs. Both
datasets mainly serve graph-level granularity for anomaly
detection and they do not provide fine-grained data for
individual node classification as benign or attack. Hence,
when using these datasets, FLASH’s evaluation is confined
to graph-level anomaly detection. FLASH achieves this by
counting the number of anomalous nodes in a graph. If
the count exceeds a predetermined threshold, the graph is
classified as anomalous.
Detectors for Comparison. To evaluate FLASH, we
use two provenance graph-based IDSes as benchmarks:
ThreaTrace [67] and Unicorn [30]. We use the same de-
tection metrics as the respective system that we com-
pare against. We use node-level anomaly detection for
ThreaTrace comparison, while for Unicorn, we conduct
graph-level anomaly detection because Unicorn is inca-
pable of performing fine-grained anomalous node detection.
FLASH identifies a graph as anomalous if the number of
anomalous nodes in it surpasses a specific threshold.

To train the FLASH for node-level detection, we used
audit logs from benign system activities, partitioning them
into two sets: initial training and fine-tuning. After training
on the initial subset, we assessed its performance on a
benign validation set, with a focus on minimizing false
alarms. We fine-tuned the model and detection threshold
based on this evaluation. For graph-level configurations,
we trained the model and assessed it on benign validation
graphs, determining the threshold from the number of alerts
generated during this evaluation phase. To combat overfit-
ting, we included regularization and dropout layers during
model training.

While we recognize the significance of comparisons for
benchmarking, it is not feasible for us to include Shade-
Watcher [71] and ProGrapher [69] in our evaluations. This
is primarily due to their closed-source nature. Moreover, we
could not replicate these systems accurately based on paper
descriptions alone. A key component of ShadeWatcher is
proprietary, confirmed through our communication with the
authors. Moreover, ShadeWatcher is tailored for offline de-
tection, taking hours to train and detect, making it unsuitable



for enterprise settings. As for ProGrapher, its limitations in
enterprise environments are already summarized in Table 1.
The ThreaTrace study [67] provides a comparison with
ProvDetector [66] and StreamSpot [51], and exhibits supe-
rior results in detection rates and efficiency. Since FLASH
outperforms ThreaTrace in our evaluations, it suggests a
higher efficacy over ProvDetector and StreamSpot.

RQ1. Detection Performance

We conducted two experiments to assess FLASH’s de-
tection performance. In the first experiment detailed in this
RQ, we used the GNN as the anomaly detector. The second
experiment, detailed in RQ2, employed a pre-stored GNN
embeddings database coupled with a lightweight down-
stream classifier.

Table 2 presents the performance of FLASH and
ThreaTrace [67] on our evaluation datasets. FLASH con-
sistently surpasses ThreaTrace, achieving superior precision
and F-score values. In comparison to ThreaTrace, FLASH
generates semantically rich vectors utilizing word2vec and
system attributes. This provides valuable context for the
model to establish a distinct decision boundary between
normal and anomalous nodes, subsequently reducing false
positives and enhancing precision and F-score. As the
ThreaTrace paper lacks evaluation results for the OpTC
dataset, we executed ThreaTrace on OpTC to obtain evalu-
ation results. The findings demonstrate that FLASH signifi-
cantly outperforms ThreaTrace, as OpTC attacks are more
challenging to detect due to smaller, well-blended malicious
activity. ThreaTrace relies solely on syscall distribution pat-
terns as features, which is insufficient. On the other hand,
the Word2Vec encoded features employed by FLASH offer
more semantic information for each node, making it harder
for attack nodes to conceal themselves.

At first glance, on some datasets, such as Cadets,
FLASH shows incremental improvement in comparison to
ThreaTrace. This is attributed to partially available semantic
attributes in these datasets, which poses a challenge in
effectively learning the distribution of nodes. However, we
provide evidence of FLASH’s effectiveness in reducing false
alarms on those datasets. For instance, on the Cadets dataset,
FLASH achieved a reduction of 641 false alarms, resulting
in a 47% decrease in analyst workload for alert validation.
Additionally, with the OpTC dataset’s richness in semantic
attributes, FLASH consistently outperforms ThreaTrace by a
significant margin. Section 6 discusses how the real-world
audit logs are semantically rich (similar to OpTC), which
allows FLASH to perform better detection in real-world
settings compared to ThreaTrace.

We also compare FLASH to the Unicorn system [30].
While FLASH functions as a node-level anomaly detector,
Unicorn operates at a graph-level. To ensure a fair compar-
ison between these systems, we modify FLASH to perform
graph-level detection as well. Unlike ThreaTrace, Unicorn’s
functionality is governed by an extensive range of hyper-
parameters, making evaluation of other DARPA datasets a
complex task due to the exhaustive tuning required. Hence,

TABLE 3: Comparison of FLASH and Unicorn detector.

Datasets System Precision Recall F-score

StreamSpot Unicorn 0.95 0.97 0.96
FLASH 1.0 0.96 0.98

Unicorn SC-1 Unicorn 0.85 0.96 0.90
FLASH 0.92 0.96 0.94

Unicorn SC-2 Unicorn 0.75 0.80 0.78
FLASH 0.96 0.96 0.96

Theia (E3) Unicorn 1.0 1.0 1.0
FLASH 1.0 1.0 1.0

Cadets (E3) Unicorn 0.98 1.0 0.99
FLASH 1.0 1.0 1.0
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Figure 3: Inference times using one host logs from OpTC dataset.
FLASH leverages embedding database to accelerate inference.

to maintain fairness, we resort to the datasets originally used
by the authors of Unicorn. Table 3 presents the experimental
results of the detection comparison between the two systems.
While the performance of Unicorn matches that of FLASH
on certain datasets like Cadets, which feature less stealthy
graphs, FLASH outperforms Unicorn on more stealthy attack
datasets such as Unicorn SC-1 and SC-2. This advantage is
attributed to FLASH’s use of Graph Representation Learning,
along with temporally sensitive node embeddings, which
enables it to develop a strong understanding of baseline
benign behavior. As a result, FLASH can effectively flag
even the most stealthy attack graphs.

RQ2. Scalability Analysis of FLASH

Building on the evaluation from RQ1, we assess the
scalability enhancements provided by utilizing the GNN em-
bedding database in FLASH. These pre-stored embeddings
are coupled with Word2Vec semantic encodings to serve
the XGBoost classifier. When examining the E3 dataset, we
identified a significant proportion of nodes lacking attribute
data. For instance, among the four datasets within DARPA
E3 – Cadets, Trace, FiveDirections, and Theia – there are
70%, 54%, 72%, and 76% of nodes respectively with miss-
ing attribute data. As detailed in Section 4.4, this data is vital
for node and neighbor identification, as well as for assigning
Persistent Node Identifier (PNI). Without these PNIs, our
efficient embedding database cannot be employed. However,
the OpTC dataset, providing complete node information, en-
ables FLASH to implement the two-step pipeline. Therefore,
during the inference (detection) phase, we exclusively use
the embedding database for OpTC. In contrast, we generate
GNN embeddings for E3 during inference.

In the training phase, FLASH’s GNN model generates
embedding vectors from benign data and stores these in a
key-value data store for future use. During runtime, these
stored embeddings are combined with Word2Vec vectors to



act as feature vectors for the XGBoost model, which then
carries out anomaly detection. The detection results, outlined
in Table 2 under the ”FLASH (GNN + XGBoost)” column,
indicate that the detection performance of FLASH utilizing
this two-step pipeline is on par with using only GNN for
anomaly detection, and considerably surpasses ThreaTrace.
Furthermore, this two-step pipeline greatly accelerates pro-
cessing speed compared to ThreaTrace. As depicted in Fig-
ure 3, the reuse of GNN embeddings leads to up to three
times less time overhead than ThreaTrace. The reported
inference time uses logs from a single host’s one-day worth
of system logs within the OpTC dataset. We observed a
similar reduction in inference time overhead when we used
logs from more hosts in our experiments. Thus, our approach
can save hours of inference time in large enterprises and help
prevent log congestion, ensuring timely alerts.

In our experimentation, we observed that FLASH suc-
cessfully assigns pre-stored embeddings to approximately
84% of nodes on average during runtime, with the hit rate
reaching up to 90%. This high rate of assignment show that
many system entities exhibit repetitive behavior patterns,
also shown by several studies [33, 34, 47], enabling FLASH
to leverage its two-step pipeline for enhanced scalability and
real-time APT detection.

RQ3. Role of Batch Size

FLASH runtime performance is dependent on the number
of logs it processes at a given time, a behavior regulated by
the batch size parameter K. We conduct a comprehensive
analysis to show the performance of our system under
various batch sizes. We employ a sliding event window to
process system logs as they are received by FLASH.

Figures 4a demonstrate the effect of increasing batch
size on the runtime consumption of CPU and memory
resources. Interestingly, CPU utilization remains relatively
constant, while memory consumption exhibits an almost
linear growth with respect to the batch size, reaching a
peak of approximately 600 MB for an event window size
of 250K. These observations suggest that FLASH is adept at
utilizing system resources efficiently, even when processing
large batches, thereby rendering it suitable for real-time
IDSes. Figure 4b portrays the inference time for different
batch sizes using the OpTC dataset. The event window
size selection also exerts an impact on the detection per-
formance of FLASH. Smaller window sizes hinder the com-
plete capture of system node activities, thereby resulting
in diminished detection accuracy. Figure 4c displays the
improvement in various accuracy measures of FLASH as the
batch size increases. Notably, the performance experiences
an enhancement until a specific threshold, after which it
stabilizes. From these findings, it is evident that the optimal
choice of batch size relies upon the resource constraints
and requirements of the enterprise environment where the
FLASH system will be deployed. For systems with resource
limitations, a smaller event window size may be neces-
sary, while high-performance systems with substantial event
throughput could benefit from a larger window size.
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Figure 4: Influence of batch size parameter K on different per-
formance metrics of FLASH

RQ4. Robustness against Mimicry Attacks

To assess FLASH’s resilience against adversarial attacks,
we performed adversarial mimicry attacks on provenance-
based IDSes, as detailed by Goyal et al. [26]. The sus-
ceptibility of IDSes with graph-level granularity (as de-
scribed in Section 2), such as Unicorn [30], StreamSpot [51],
ProvDetector [66], and SIGL [31] to adversarial attacks is
a notable finding in Goyal et al.’s work. This adversarial
strategy manipulates distributional graph encoding to stage
an evasion attack against provenance-based IDSes, with
the objective of creating misleading similarities between
the node neighborhood distributions in the attack graph
and those in benign provenance graphs. The goal of this
strategy is to make the nodes within the attack graph have
similar embeddings to nodes involved in benign activities. In
pursuit of this, we integrated benign node structures from the
training dataset into the attack graph. It’s critical to mention
that FLASH uses GNN to encode the structural information
of nodes within the provenance graph. This GNN collects
feature vectors from a node’s parents via a message-passing
mechanism to create a D-dimensional vector representation
for each node based on its k-hop neighborhood.

The experimental results, visualized in Figure 5, display
the number of edges added to the attack graph using benign
structures (x-axis) versus the anomaly scores (minimum,
average, and maximum) for all attack nodes (y-axis) with
respect to the number of benign edges added. Initially,
adding benign node neighborhoods decreased the anomaly
scores of attack nodes, but this reduction was insufficient
to ensure a successful evasion, as depicted by the threshold
line in Figure 5. Subsequently, as more benign edges were
introduced, the anomaly scores of attack nodes increased.
This trend can be attributed to the fact that incorporating
additional benign nodes around an attack node enhances its
embedding, imbuing it with more benign characteristics and
thereby reducing the node’s anomaly score. However, the
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Figure 5: Adversarial mimicry attack against our system.

continual addition of more benign nodes raises suspicion
within the model. This alteration in the node distribution,
learned by the model, results in an increase in the anomaly
score. This unique behavior can be linked to our model’s
robust semantic understanding, derived from the node-level
learning task. Through this process, FLASH develops a com-
prehensive understanding of the characteristic neighborhood
structures associated with nodes of varying semantics in the
provenance graph. This understanding enables the model
to accurately determine the legitimacy of causal relations
between different nodes in the graph, making FLASH highly
resistant to adversarial mimicry attacks. This resilience rep-
resents a significant advantage over graph-level detection
approaches.

RQ5. Ablation Study

In our ablation study, we systematically assessed
FLASH’s performance by altering various parameter settings
and components, showcasing their influence on the system’s
effectiveness. Key areas of our exploration include the im-
pact of different lightweight classifiers, the use of weighted
cross-entropy loss, the efficacy of GNN embeddings in
contrast to Word2Vec embeddings, and the role of temporal
ordering. Further aspects of our study, including hyperpa-
rameter analysis, embedding database scalability analysis,
and attack case studies are discussed extensively in the
Appendix (Appendices A, B, and C).

Varying Lightweight Classifiers. We tested the perfor-
mance of different lightweight models, namely Random
Forests and Support Vector Machines (SVM), against XG-
Boost using the OpTC dataset. Random Forests, ensemble
learners, use multiple decision trees. SVMs are classifiers
that find a hyperplane optimizing class margins. Figure 6a
displays the average detection performance of these classi-
fiers on three OpTC attacks. Figure 6b shows each model’s
time overhead. The SVM model was slower and less accu-
rate than XGBoost and Random Forest. Although Random
Forest performed similarly to XGBoost, XGBoost surpassed
it in speed and detection accuracy. Other works [17, 62] have
also shown the advantages of XGBoost over other classifiers.

Effect of Weighted Cross Entropy Loss. Weighted cross
entropy addresses dataset class imbalance. We studied its
impact on training GNN compared to vanilla cross entropy.
Figure 7 shows the effects of these loss functions on model
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Figure 6: Detection and time comparison of different classifiers.

accuracy over epochs. With weighted cross entropy, the
model achieved a 91% accuracy in just 50 epochs, while it
took over 100 epochs to attain the same accuracy when using
vanilla cross entropy. Consequently, weighted cross entropy
facilitates the learning process of the model by ensuring
equal focus on all node types.
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Figure 7: Effect of Weighted Cross Entropy on GNN Learning.

Efficacy of GNN Embeddings. In order to evaluate the effi-
cacy of GNN structural embeddings, we compared FLASH’s
performance with Word2Vec embeddings, which were gen-
erated from 2-hop sentences employing the approach delin-
eated in Section 4. As demonstrated in Figure 8, GNN sur-
passes Word2Vec embeddings, owing to its capacity to learn
structural features and effectively discern pertinent patterns
from extraneous noise. Conversely, Word2Vec combines all
information in the vicinity, including the noise, resulting in
inferior performance. This highlights the power of GNN in
accurately capturing neighborhood information within the
provenance graph.
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Figure 8: GNN vs. Word2Vec for capturing structural information.

Effect of Temporal Ordering. Our analysis explores the
impact of temporal ordering on FLASH’s performance. The
featurization phase of FLASH has two main steps. First, it
extracts semantic information from logs. Second, it uses the
time sequence of system events, as stated in Section 4.2.
We used the Trace dataset from E3 to study the effect of
temporal ordering. In this experiment, we used temporally
sorted system event sequences as features. We encoded these
sequences into vector space with our temporal word2vec



technique. We compared our results to ThreaTrace, a method
that does not consider temporal ordering. To focus on tempo-
ral ordering’s effect, we excluded semantic attributes, which
ThreaTrace also ignores. The results, presented in Table 4,
showed a significant reduction in false alarms when con-
sidering temporal ordering. This improvement results from
differentiating nodes that perform the same system events
but in varying orders. Ignoring temporal ordering makes
learning these nodes’ distribution challenging. Incorporating
it, however, allows the model to distinguish these nodes
better, leading to improved detection performance.

TABLE 4: Effect of considering temporal ordering.

Temporal Order Precision Recall F-Score TP FP
No 0.72 0.99 0.83 67382 26774
Yes 0.84 0.99 0.91 67382 12845

Effectiveness of Selective Graph Traversal. We conducted
experiments to analyze how our graph traversal techniques
affect the training time of GNN. We conducted tests using
varying numbers of system events and trained both the GNN
model with and without the selective traversal techniques
for the same number of epochs. The results are illustrated
in Figure 9, revealing that our traversal techniques lead up
to a 43% reduction in the training time of GNN for the
specified number of system events.
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Figure 9: Effectiveness of FLASH’s selective graph traversal.

RQ6. Accelerating Alert Validation

FLASH’s primary design goal is threat detection, but its
potential extends to facilitating faster attack investigation.
We focus on two main areas: managing threat alert fatigue
and generating Attack Evolution Graphs (AEGs). Alert fa-
tigue arises when security analysts deal with excessive threat
alerts, leading to overlooked threats amid false alarms. To
assess if FLASH can mitigate this issue, we rank alerts based
on the threat (anomaly) scores assigned by FLASH. Fig-
ure 10 presents a cumulative distribution function for ranked
true and false alarms. It demonstrates that FLASH’s threat
scores prioritize true alerts. Furthermore, if a separation
threshold is established at the score of the lowest true alert,
up to 60% of false alarms can be discarded. This prioritiza-
tion helps analysts focus on higher-scored alerts, lessening
the chances of overlooking real threats and minimizing the
attacker’s exposure time. In terms of AEGs, these visual
aids map an attack’s evolution, assisting analysts during
alert validation. As Figure 11 indicates, using AEGs reduces
the number of items investigators need to review because
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Figure 10: CDF of threat scores for false alarms and true alerts.
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Figure 11: Number of AEGs generated from the threat alerts
present in DAPRA E3 and OpTC.

there are fewer AEGs than individual alerts. This investiga-
tive approach, similar to the RapSheet system [32], allows
for a more efficient, focused attack analysis. Conversely,
ThreaTrace struggles with alert triaging due to the use of
multiple GNN models for predictions. An alert is triggered
only when all models classify a node as anomalous, resulting
in each node having distinct alert scores from different
models. The lack of a singular representative anomaly score
for each node poses a significant challenge in the triaging
process.

6. Discussion and Limitations

False positives. While FLASH displays a low false pos-
itive rate, certain scenarios might lead to false positives,
especially in the presence of unobserved benign activities.
This is a common challenge with anomaly-based detec-
tion systems. Regular model training and adjustment of
the alert threshold parameter could alleviate this. Active
learning [60], a technique that solicits analyst feedback on
ambiguous classifications for model updates, could further
reduce false positives. We propose a threat alert triaging
method in Section 5 to alleviate the false positive issue.
Enriched system logs. FLASH relies on enriched system
logs containing detailed information about system entities
and their interactions. However, not all datasets in our eval-
uation (e.g., DAPRA E3) fully contained rich system logs to
generate persistent IDs for GNN database. In such cases, we
show that using only GNN-based classification, FLASH out-
performs state-of-the-art provenance-based IDSes. Further,
we found that almost all commercial IDSes, also known as
Endpoint Detection and Response systems (EDRs), generate
semantically rich system logs [6, 32, 47, 69], making our
technique widely applicable.
Alert validation. While FLASH expedites alert validation,
it’s important to note that its primary objective is threat de-
tection, with alert validation improvement being a secondary



benefit. Our approach comes with its inherent limitations.
Alert ranking accuracy is closely tied to the precision of
threat scores, while the utility of AEGs depends on the
correct detection and interpretation of alert relationships -
misclassifications can lead to misleading AEGs. Moreover,
FLASH’s performance may vary with different operational
environments and datasets, requiring continuous fine-tuning.
Future work could involve user studies with security analysts
to enhance FLASH’s effectiveness further.
Concept drift. Concept drift, where the data distribution of
the underlying system evolves over time, is a potential issue.
For instance, with the emergence of new system activities,
the patterns learned by FLASH during training might not
remain valid. This drift could lead to misclassifications,
as new benign behaviors might be mistakenly identified as
anomalies. One mitigation strategy for this involves periodic
retraining with more recent data to update both the model
and the embedding database. Due to its selective traversal,
FLASH’s training is efficient, enabling users to periodically
retrain their models. However, this approach presents the
challenge of preserving the model’s ability to recognize
older but still relevant attacks. Unfortunately, no public
datasets currently exist to evaluate this strategy’s efficacy. As
such, the effective handling of concept drift within FLASH
remains a challenge that warrants future research.
Adaptive adversarial attacks. We evaluated Flash’s re-
silience against mimicry attacks in section 5 and will fur-
ther discuss its vulnerabilities to other types of adversarial
attacks, including gradient-based [22] and training-time poi-
soning attacks [40]. Gradient-based attacks typically require
white-box access to the machine learning model and its
parameters making them less feasible in real-world settings.
In contrast, black-box attacks often use iterative, query-
based methods, making these attacks less stealthy and more
complex to execute. Training-time poisoning attacks com-
promise the model by introducing malicious data into the
training set.

Various existing defenses can be integrated into Flash to
improve its robustness against these attacks. For example,
adversarial training [63] and gradient masking [50] are
commonly used to defend against gradient-based attacks.
The former involves augmenting the training dataset with
adversarial examples to improve model robustness, while
the latter makes it difficult for attackers to accurately com-
pute gradients for crafting adversarial inputs. Techniques
from previous work on defending against audit log tamper-
ing [14, 57] can be adapted to prevent training-time data poi-
soning attacks. These defenses can be readily incorporated
into Flash to enhance its resistance to adaptive adversaries.

7. Related work

In Section 2.1, we described the challenges with ex-
isting provenance-based IDSes that FLASH addresses, and
complement the discussion on related work here.
Specification-based IDS. Specification-based IDS methods
such as Holmes [54], Rapsheet [32], and Poirot [55] detect

deviations from normal behaviors using specification rules
on provenance graphs. Although these approaches effec-
tively reduce false positives, they risk being circumvented
by new attacks and require continuous updates to address
the evolving threat landscape. In contrast to these systems,
FLASH is a more scalable and robust solution, capable of
detecting previously unseen threats by leveraging rich se-
mantic and contextual information from provenance graphs.
Embedding-based IDS. Embedding techniques are widely
used for log analysis tasks, such as IDS [15, 16, 27, 52]
and malware identification [21, 39, 74]. They often employ
ML models, such as neural networks and n-grams to trans-
form logs into vector forms. Examples include DeepLog
using LSTM [23], ProvDetector applying Doc2Vec [45, 66],
and Attack2Vec leveraging a temporal word-embedding
model [61]. Euler [41] uses GNN and RNN embeddings
to detect lateral movements. SIGL [31] focuses solely on
detecting malicious software installations via deep learn-
ing and suffers from the limitations of graph-level granu-
larity detection. Moreover, SIGL’s evaluation is based on
a small dataset of normal/malicious software installations,
making it challenging to scale to large provenance graphs.
DeepAid [29] uses deep neural networks to detect anomalies
in network traffic. Different from these systems, FLASH is
a host-based IDS blends GNN with rich semantic word
embeddings from system logs and stores training-phase
embeddings for real-time APT detection.
Provenance-based Investigation. Hassan et al. [34] uti-
lized grammatical inference over provenance graphs to ex-
pedite system intrusion investigations. Pasquier et al. [58]
introduced CamQuery, a real-time provenance analysis
framework. Furthermore, existing systems,such as DEP-
COMM [68], DEPIMPACT [24], Watson [70], NoDoze [33],
Palantir [72], Deepcase [64], SAQL [25], OmegaLog [35],
C2SR [43], Dossier [38], and Atlas [16], facilitate attack
investigations and incident response. These existing systems
are orthogonal to our research direction as they are not
designed to detect APT attacks. They require initial attack
symptoms from intrusion detectors to initiate investigations.

8. Conclusion

In this paper, we present FLASH, a novel host-based
intrusion detection system leveraging provenance graph
representation learning to address challenges in accuracy,
practicality, and scalability. FLASH employs semantic and
contextual encoders to capture essential graph attributes, and
an embedding recycling database for real-time threat detec-
tion. Our extensive evaluations confirm FLASH’s superior
detection accuracy, resilience against mimicry attacks, and
potential to expedite alert verification.
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Appendix A.
Impact of Hyperparameters

FLASH is influenced by four primary hyperparameters:
similarity threshold, events batch size, anomaly threshold,
and graph sampling rate. The impact of batch size has been
examined in a previous subsection, while the characteristics
and investigation of the other parameters are detailed below.
Jaccard Similarity Threshold. The hyperparameter gauges
the match between stored and real-time node neighborhoods,
guiding the reuse of GNN embeddings. A low threshold
increases node coverage but may misrepresent neighbor-
hoods, while a 100% threshold guarantees context accuracy.
Figure 12 shows that a higher threshold raises the AUC
score, reducing mislabeling of malicious nodes and enhanc-
ing anomaly detection.
Anomaly Threshold. This hyperparameter controls the
number of anomalies generated by the detector, determining
the trade-off between false positives and false negatives.
The ROC-AUC curve is utilized to evaluate the influence of
adjusting the threshold on detection performance. Figure 13
depicts the ROC curve for the OpTC dataset.
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Figure 13: Classification threshold.

Host Samples. An ML system generally improves with
more data, yet fewer hosts can suffice if benign patterns are
consistent, as our OpTC dataset tests show. Training FLASH
with data from just 10 hosts yielded high accuracy, and more
hosts didn’t enhance it (see Figure 14). This suggests that
judicious data use can conserve resources without sacrificing
accuracy.
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Figure 14: Host samples for training.

Graph Sampling Rate. In Graph Neural Network, the
sampling rate affects neighborhood size for node features,
with higher rates offering richer structural insights for GNN
but increasing complexity and processing time. Our research
reveals that a greater sampling rate boosts FLASH’s precision
due to enhanced structural embeddings, though it heightens
time overhead. Figure 15a and 15b shows the effect of
sampling rate on FLASH.
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Figure 15: Graph sampling rate impact.

Appendix B.
Growth of Embedding Database.

We conducted experiments to study the growth of em-
bedding database over 6 days of benign logs present in
the OpTC dataset. Fig 16 shows the results. Initially, we
observed a steady growth rate of 3%, which gradually
decreased to 1% and eventually stabilized. This intriguing
behavior can be attributed to the innovative abstraction
techniques we employed. These techniques effectively pre-
vent redundant storage of identical nodes under different
execution runs, leading to optimized database management.
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Figure 16: Growth of Embedding Database Overtime.

Appendix C.
Additional Attack Case Studies

The first and third OpTC attacks are describe here while
the second attack is already explained in Section 2.

OpTC Attack 1

Figure 17 illustrates the provenance graph for attack 1.
The aim of this attack was to setup the attacker’s foothold
into the system and identify other vulnerable hosts in the
network. The attack commences with the red team down-
loading a malicious PowerShell Empire stager stored in a
batch file named runme.bat. This file was downloaded
via Firefox.exe. Once downloaded, the attacker lever-
aged this malicious binary to perform network scanning
to identify vulnerable hosts on the network. They then
used Windows Management Instrumentation for lat-
eral movement. FLASH was able to identify all main com-
ponents of this attack. It flagged the Firefox.exe process
used for downloading the malicious binary runme.bat. It
also identified the binary runme.bat and other nodes that it
interacted with, such as wmiprvse.exe, lsass.exe, and
ping.exe.

OpTC Attack 3

Figure 18 outlines attack 3, where the red team ex-
ploited software updates to create a backdoor. They installed
a vulnerable Notepad++.exe, which fetched a backdoor
binary, update.exe, upon update. This binary, containing
cKfGW.exe, connected to the attackers via Port:8080,
facilitating network scans and information gathering. FLASH
flagged the compromised Notepad++.exe, the binary
update.exe, and the attacker’s IP 53.192.68.50.
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Appendix D.
Training Algorithm

Algorithm 3 shows the steps for training the GNN and
XGBoost models of FLASH. The algorithm combines the
Graph Neural Network and XGBoost to perform node clas-
sification on a given graph G = (V,E). The algorithm starts
by initializing the GNN and XGBoost models. Then, it uses
our efficient graph traverser to train the GNN model using
the semantic feature vectors generated using Word2Vec.
Next, it generates Word2Vec and GNN embeddings for
each node in the graph and concatenates them to create a
joint feature vector for each node. The XGBoost model is
then trained using these joint feature vectors. Additionally,
the algorithm constructs a feature store containing GNN
embeddings and neighbor information for each node in
the graph. The trained GNN, XGBoost models, and the
embedding store are returned as the output of the algorithm.
This integrated approach leverages both GNN and traditional
machine learning (XGBoost) to capture complex causal
relationships in the given provenance graph.

Algorithm 3: TRAININGALGORITHM
Inputs : Graph G = (V ,E);
Output: GNN Model gnn;

XGBoost Model xgb;
Feature Store featureMap

1 gnn ← INITIALIZEGRAPHSAGE ()
2 xgb ← INITIALIZEXGBOOSTCLASSIFIER()

3 traverser = GRAPHTRAVERSER(G)

/* Training the GNN model */
4 foreach Subgraph (Vn,En) ∈ traverser do
5 Xn ← GETWORD2VECFEATURES(Vn ,En)
6 gnn ← gnn.train(Xn,En)
7 end
/* Training the XGBoost model. */

8 foreach (Vn,En) ∈ G do
/* Generating Word2Vec embeddings */

9 X ← GETWORD2VECFEATURES(Vn ,En)
/* Generating the GNN embeddings */

10 Y ← GETNODEGNNEMBEDDING(Vn ,En)
/* Concatenate the Word2Vec & GNN embeddings */

11 Z ← CONCAT(X ,Y )

12 xgb ← xgb.train(Z)
13 end

/* Initializing the GNN embedding database */
14 featureMap ← INITIALIZEHASHTABLE()

15 foreach Node N ∈ G do
/* Key of the hashmap is node persistent ID and

values are neighbor set & GNN embeddings */
16 Neighbors ← CONSTRUCTNEIGHBORSET(N )
17 ID ← GETPERSISTENTNODEID(N )
18 Emb ← GETNODEGNNEMBEDDING(N ,gnn)

19 featureMap[ID] ← (Emb,Neighbors)
20 end
21 return gnn, xgb, featureMap



Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

This paper presents FLASH, an intrusion detection sys-
tem (IDS) based on provenance graphs. The main contri-
bution is to use an improved Word2Vec method to encode
node attributes and temporal information and a graph neural
network (GNN) to generate node embeddings. The system
introduces a series of designs (including a pre-computed
embedding database) to quickly generate embeddings during
the testing time to improve scalability and run-time effi-
ciency. The authors evaluated FLASH with multiple datasets
and also tested the adversarial robustness.

E.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

E.3. Reasons for Acceptance

1) The paper provides a valuable step forward in an
established field. It introduces a new solution to a
known problem in existing provenance-based intrusion
detection systems which is the detection efficiency (i.e.,
run-time scalability). A series of ideas are proposed and
evaluated including selective graph traversal, recycling
database, and embedding caching to speed up the de-
tection efficiency.

2) The paper creates a new tool to enable future science.
The proposed solution incorporates other designs such
as node attribute encoding and temporal information
encoding to improve the detection performance. The
tools are extensively evaluated to justify the contribu-
tion of each design. The authors will open-source the
developed tool to facilitate future research in this area.
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