
FAuST: Striking a Bargain between Forensic Auditing’s
Security and Throughput

Muhammad Adil Inam
University of Illinois at
Urbana-Champaign

mainam2@illinois.edu

Akul Goyal
University of Illinois at
Urbana-Champaign
akulg2@illinois.edu

Jason Liu
University of Illinois at
Urbana-Champaign
jdliu2@illinois.edu

Jaron Mink
University of Illinois at
Urbana-Champaign

jaronmm2@illinois.edu

Noor Michael
University of Illinois at
Urbana-Champaign
nsm2@illinois.edu

Sneha Gaur
University of Illinois at
Urbana-Champaign
sg2@illinois.edu

Adam Bates
University of Illinois at
Urbana-Champaign
batesa@illinois.edu

Wajih Ul Hassan
University of Virginia
hur7wv@virginia.edu

ABSTRACT
System logs are invaluable to forensic audits, but grow so large that
in practice fine-grained logs are quickly discarded – if captured at
all – preventing the real-world use of the provenance-based inves-
tigation techniques that have gained popularity in the literature.
Encouragingly, forensically-informed methods for reducing the size
of system logs are a subject of frequent study. Unfortunately, many
of these techniques are designed for offline reduction in a central
server, meaning that the up-front cost of log capture, storage, and
transmission must still be paid at the endpoints. Moreover, to date
these techniques exist as isolated (and, often, closed-source) im-
plementations; there does not exist a comprehensive framework
through which the combined benefits of multiple log reduction
techniques can be enjoyed.

In this work, we present FAuST, an audit daemon for performing
streaming audit log reduction at system endpoints. After registering
with a log source (e.g., via Linux Audit’s audisp utility), FAuST
incrementally builds an in-memory provenance graph of recent sys-
tem activity. During graph construction, log reduction techniques
that can be applied to local subgraphs are invoked immediately us-
ing event callback handlers, while techniques meant for application
on the global graph are invoked in periodic epochs. We evaluate
FAuST, loaded with eight different log reduction modules from the
literature, against the DARPA Transparent Computing datasets.
Our experiments demonstrate the efficient performance of FAuST
and identify certain subsets of reduction techniques that are syner-
gistic with one another. Thus, FAuST dramatically simplifies the
evaluation and deployment of log reduction techniques.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’22, December 5–9, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9759-9/22/12. . . $15.00
https://doi.org/10.1145/3564625.3567990

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation.

KEYWORDS
Auditing, Log Reduction

ACM Reference Format:
Muhammad Adil Inam, Akul Goyal, Jason Liu, Jaron Mink, Noor Michael,
Sneha Gaur, Adam Bates, and Wajih Ul Hassan. 2022. FAuST: Striking a
Bargain between Forensic Auditing’s Security and Throughput. In Annual
Computer Security Applications Conference (ACSAC ’22), December 5–9, 2022,
Austin, TX, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3564625.3567990

1 INTRODUCTION
System logs form the basis for most reactive security measures
in modern-day systems, describing fine-grained manipulations of
kernel objects such as process creation, file access, and registry
updates. These events are analyzed by Endpoint Detection and
Response (EDR) systems [11] to alert analysts to potential intru-
sions, e.g., when system events match against the MITRE ATT&CK
knowledge-based of adversarial tactics, techniques, and procedures
[45]. Such logs are also essential to novel provenance-based au-
diting techniques (e.g., [2, 18, 25, 34, 36, 46]), where events are
processed into causal dependency graphs so that the relationships
between system entities can be easily identified. Even with alerting
systems, log-based investigations are an essential step to system
defense due to the high rate of false alarms observed in today’s
security products [6, 10].

Unfortunately, system logs can quickly grow to unwieldy sizes –
while volume varies depending on machine load, logs generation
rates have been reported to be anywhere between 1 GB [30] to 33
GB [34] per day per machine. These costs quickly add up, to the
point that many large organizations are simply unwilling to pay
for long-term retention of system logs. Products will often store
logs in a ring buffer that is allocated to provide just a few months

1

https://doi.org/10.1145/3564625.3567990
https://doi.org/10.1145/3564625.3567990
https://doi.org/10.1145/3564625.3567990

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Muhammad Adil Inam, Akul Goyal, Jason Liu, Jaron Mink, Noor Michael, Sneha Gaur, Adam Bates, and Wajih Ul Hassan

[38], or even days [53, 54], of storage. Worse, some products may
not store recent logs at all unless explicitly and swiftly asked to
do so by an analyst in response to a particular incident. These
retention periods are simply insufficient when considering the
“dwell times” observed by attackers in high-profile data breaches
(e.g., [4, 26, 27, 43, 44, 49, 51]), contributing to the difficulty of
effectively detecting and responding to threats.

In recognition of this difficulty, a rich literature has emerged that
explores methods of reducing log data (e.g., [15, 21, 30, 39, 55, 59]).
These techniques are often forensically-informed, translating in-
sights about how logs are used in investigations into algorithms
that selectively remove log events with little forensic value. For
example, Lee et al.’s pioneering LogGC leverages the insight that
log events describing temporary file I/O can be safely removed if
those events do not impact the present state of the system [30]. Al-
ternately, Xu et al.’s notion of Causality-Preserving Reduction (CPR)
observes many log events describing I/O are redundant from an
information flow perspective and can thus be removed [59]. While,
trivially, retaining an unreduced log is better for organizational
security than a reduced log, researchers have nonetheless demon-
strated that reduced logs can often satisfy the needs of analysts
during threat investigations.

Given the pressing need for highly-efficient log retention meth-
ods, why limit ourselves to one log reduction technique? Unfortu-
nately, a variety of obstacles prevent such an approach. First, as a
practical consideration, many log reduction techniques described
in the literature or either proprietary or otherwise closed-source.
Second, even if code for all of these techniques was available, they
were designed for different log formats and under different deploy-
ment models; for example, Hossain et al.’s DPR system is designed
as an offline mechanism that operates on a “completed” log [22],
while CPR performs a local calculation and thus is suitable for an
online setting [60]. Finally, and perhaps most importantly, there
has been only limited exploration of whether these techniques can
be “pushed down” to endpoints, focusing instead on a centralized
log server model. Techniques applied at a central server may reduce
the costs of long-term storage, but do not avoid the costs of local
storage or network transmission. Further, many enterprises use
third party cloud-based security products that ingest logs directly
from endpoints. Since these security products charge by the GB
(e.g., Splunk [52]), delayed log reduction not only increases the
network transmission cost, but also incurs sizable financial costs
due to expensive security licenses.

In this work, we present FAuST, a logging daemon that can
perform transparent and modular audit log reduction directly at
the endpoints where voluminous log events are generated. FAuST
is comprised of modular parsers that interpret different audit log
formats to create a uniform in-memory provenance graph repre-
sentation. From there, modular filters can be applied to the graph
to make reduction decisions that are then attributed back to the
audit log. Locally-applicable log reduction algorithms are directly
invoked on the graph as it is constructed in an event-driven fashion
while globally-applicable log reduction algorithms are converted
to a streaming setting by being invoked periodically in an epochal
fashion. Our FAuST implementation can be registered with Linux
Audit using the audisp utility. It is also compatible with the DARPA

Transparent Computing’s Common Data Model and can be easily
extended to support alternate logging frameworks.

Using FAuST, we re-implement 8 exemplar log reduction tech-
niques from the literature, then evaluate their performance against
DARPA Transparent Computing’s TRACE, THEIA, and CADETS
systems using both Engagements 3 and 5 (i.e., six total datasets).
We find that reduction performance can vary considerably based
on the workloads of the target machine. We also observe a ceiling
effect when attempting to apply these techniques in tandem; the
most aggressive technique (S-DPR [22]) reduces log size by 87.3%,
as compared to 90.7% when all techniques are applied. Moreover,
our evaluation reveals that techniques that might not offer signifi-
cant individual reduction (e.g., [14, 31, 56]) can still provide value-
addition when applied with other techniques due to the unique and
non-overlapping data patterns exploited by them. Through open-
sourcing FAuST and associated log reduction implementations, we
hope to make log reduction more accessible and also simplify the
process of evaluating future techniques.

The main contributions of this paper are as follows:
• We propose FAuST, an audit daemon that transparently com-
bines various log reduction techniques and applies them to
streaming audit logs at the endpoints. To the best of our
knowledge, we are the first ones to identify a unified set of
requirements for 8 disparate log reduction algorithms and
create a novel platform for these techniques to be transpar-
ently applied.
• We present a modular design for FAuST that enables users to
seamlessly add and remove different reduction techniques.
• We evaluate the performance, utility, and effectiveness of
FAuST using DARPA TC datasets. Additionally, we conduct
experiments to uncover the reduction variance across dif-
ferent datasets and workloads, similarity and overlap across
techniques and the benefits of using multiple techniques
together, etc.

2 LOG REDUCTION TECHNIQUES
Prior work [14, 22, 31, 40, 56, 60] has attempted to develop tech-
niques that reduce the audit log sizewithout sacrificing the forensically-
relevant evidence present in the audit logs. These log reduction
techniques leverage data provenance to identify and remove re-
dundant events from the audit logs. Data provenance describes the
totality of system execution by parsing audit logs into dependency
graphs called provenance graphs. In this graph, the vertices rep-
resent system entities, such as processes and files, and the edges
represent causal relationships between system entities. Given an
attack symptom (e.g., malicious file), the security analyst can query
the provenance graph to identify an attack’s root cause (backward
tracing query) and ramifications (forward tracing query).

Below, we describe eight examplar log reduction techniques,
which are also featured in our study.

LogGC. Lee et al. [31] proposed LogGC in 2013 and since then
this technique has been adopted by various auditing systems [29,
35, 37]. The key idea behind LogGC is to identify and "garbage
collect" system entities from the provenance graph that do not
have persistent effects on the system. Consider an application that
writes to a temporary file and later deletes that temporary file. In

2

FAuST: Striking a Bargain between Forensic Auditing’s
Security and Throughput ACSAC ’22, December 5–9, 2022, Austin, TX, USA

this case, this file event will introduce any causal dependencies in
the provenance graph; therefore, it is safe to remove this event from
the audit logs. LogGC’s reduction technique requires a complete
provenance graph; however, we found that their technique can be
applied to local subgraphs without affecting the accuracy of the
technique.

NodeMerge. Tang et al. [56] proposed a template-based tech-
nique for audit log reduction called NodeMerge. NodeMerge is
based on the observation that certain applications, during each
invocation, read a specific set of read-only files for actions such
as loading libraries, reading program configuration, and accessing
read-only resources. These sets of frequent events are the same
across all invocations and can be replaced with a single template.
The technique consists of two phases: 1) the training phase and 2)
the reduction phase. In the training phase, the system uses existing
audit logs to learn the templates of frequent reads of read-only files
for each process using FP trees. In the reduction phase, the system
applies these templates on new unseen audit logs to replace a set
of frequent reads with a single template read. The training phase
of NodeMerge requires the global provenance state, whereas the
reduction phase can be applied to local subgraphs.

CPR. The goal of the Causality Preserving Reduction (CPR) tech-
nique [60] is to remove redundant information from the audit logs
as long as the complete information flow and causality are pre-
served in the underlying provenance graph. Rather than naïvely
eliminate every repeated system call between a source and destina-
tion entity, CPR tests for interleaved flows, i.e., whether any new
inputs have been received at the source between the two system
calls. An interleaved flow indicates that the system call may not
actually be redundant and thus should be preserved. In other words,
if a process performs multiple writes to a file without reading any
other object between them, it just preserves the first write event and
removes all the subsequent write events from the audit logs. This
is because the process state does not change between subsequent
writes, and hence the new writes do not add any new information
flow.

PCAR. Process-centric Causality Approximation Reduction (PCAR)
technique [60] extends the idea of CPR by aggressively eliminating
redundant events when a "bursty" process exceeds some number of
system calls per second. This technique is based on the observation
that certain applications, such as system daemons produce a burst
of semantically similar events. These bursts of events indicate a
single high-level application event and contain many interleaved
dependencies. For instance, a process scanning for PCI devices may
repeatedly interleave read and write accesses to a specific set of files
in a burst. PCAR first identifies these bursts by identifying the pro-
cesses that interact with a large number of objects in a short time.
After that, PCAR identifies the neighbor sets and the information
inflows or outflows for these processes to achieve data reduction
without impacting the forensic analysis.

F-DPR and S-DPR. Dependency Preserving Reduction (DPR)
technique was proposed by Hossain et al. [22] in 2018. The idea
behind DPR is that a reduced provenance graph is sufficient as
long as it can identify the same entities as the full provenance
graph when performing backward tracing and forward tracing. To

achieve this, the DPR systems selectively drop flow events that are
not necessary to correctly traverse every entity’s ancestors (S-DPR),
or ancestors and successors (F-DPR). For instance, if two paths in
the provenance graph lead back to the same root-cause, S-DPR
only preserves one of the paths as long as the other path is not
preserving the dependencies for another event.

Winnower. Hassan et al. [14] proposedWinnower to reduce the
audit log size by summarizing the provenance graphs of hundreds
or thousands of replicated cloud applications. Winnower leverages
graph grammar, a rule-based mechanism for analyzing and gener-
ating a graph, to model behaviors of several endpoints in a cluster.
Using these models, Winnower identifies if the audit logs from
different endpoints in the cloud are operationally equivalent (i.e.,
highly redundant) and therefore can be removed from the audit logs
before transmitting them to the central storage server. Winnower’s
reduction technique is locally-applicable to the streaming audit
logs.

LogApprox. Michael et al. [40] proposed the LogApprox tech-
nique to efficiently summarize repeated executions of the same
program on a single host. It performs bounded regular expression
learning over file I/O events, approximating typical behaviors while
atypical behaviors are losslessly retained. LogApprox consists of
two phases - a regex learning phase and a reduction phase. In the
regex learning phase, the technique creates groups of filenames
based on path similarities and generates regexes corresponding
to each group. The regexes are crafted such that they avoid over-
generalization and do not describe unique attack patterns. In the
reduction phase, the regexes are applied to past, and new audit logs,
such that each group corresponds to a single approximated regex
entry. Since the information flow across a regex group remains
the same, approximated causality is preserved. The regex learning
phase of LogApprox requires the global provenance state, whereas
the reduction phase can be applied locally or globally.

3 SYSTEM DESIGN
3.1 Threat Model & Assumptions
The attack surface we consider in this work is that of a typical orga-
nization with several connected endpoints. After initial intrusion,
the attacks may attempt to perform privilege escalation, lateral
movement, and data exfiltration to achieve their goals. Like other
work in this space (e.g., [17, 29, 35, 37, 42, 58]), we assume that the
audit daemon running on the endpoint is not compromised. While
the adversaries can compromise user-level programs, we assume
that the system audit data is still provided and protected by the
kernel, i.e., events generated by user-level programs are faithfully
recorded and reported. We also note that maintaining the integrity
of audit logs [24, 47] is an important problem; however, we consider
this problem out of the scope of this work.

3.2 Design Goals
Given the challenges discussed in Section 1, we set out to design a
system with the following design goals:
• Online Log Reduction Our system must combine all the
relevant audit log reduction techniques and apply those tech-
niques to the streaming audit logs generated at the endpoints.

3

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Muhammad Adil Inam, Akul Goyal, Jason Liu, Jaron Mink, Noor Michael, Sneha Gaur, Adam Bates, and Wajih Ul Hassan

Audit Logs Log Parser
Log Event

Buffer

Provenance
Graph

Reduction
Engine

Reduction
StatsFAuST

Reduced
Logs

Local
Filters

Batch
Filters

Figure 1: FAuST architecture overview. First, the streaming audits logs are parsed by our log parsers to generate provenance
graphs. After that, our local filters apply locally-applicable reduction techniques in an event-driven fashion, and our batch
filters apply globally-applicable reduction algorithms in an epochal fashion on the generated provenance graphs.

• Minimal Log Transmission Our system should prevent
endpoints from sending redundant audit logs event to central
storage, i.e., only transmits logs after applying log reduction
techniques.
• Generality Our system design should be independent of
the underlying operating system and applications used by
the endpoints.
• Interoperable and Extensible. Our system must support
a variety of audit logging frameworks and should be able to
easily accommodate the incorporation of new log reduction
techniques.

3.3 Overview
To achieve these goals, we present FAuST, a logging daemon that
can perform transparent and modular audit log reduction directly
at the endpoints where voluminous log events are generated. An
overview of FAuST is shown in Figure 1. In the first step, FAuST is
registered with a log source (e.g., via Linux Audit’s audisp utility).
The raw audit logs are then fed to a log parser module that interprets
different log formats and incrementally creates two different in-
memory representations of log data – the log event buffer and
the corresponding provenance graph. The log event buffer stores
a uniform in-memory representation of each system-level entry
present in the audit logs. For each entry, it stores all necessary
fields required for analysis along with the complete log event in the
original format. The in-memory provenance graph representation
has nodes corresponding to system entities, whereas the edges in
the provenance graph correspond to individual log entries. From
there, modular filters are applied to the provenance graph to make
reduction decisions.

Locally-applicable log reduction algorithms are directly invoked
on the graph as it is constructed using event callback handlers. On
the other hand, globally-applicable log reduction algorithms are
converted to a streaming setting by being invoked periodically in
an epochal fashion. Lastly, the reduction engine is invoked at the
end of each epoch. It takes as input both the filter decisions and

the log event buffer containing the original log entries. From there,
it partially writes out the log event buffer to the disk to create the
reduced log and also tabulates statistics about reduction during
each epoch.

In the security operations center (SOC) pipeline, FAuST is de-
ployable as a transparent proxy to endpoint telemetry sensors. It
invisibly feeds logs into existing tools. Once registered with a log
source (e.g via Linux Audit’s audisp utility), the logs generated by
the system’s audit daemon (e.g, Linux auditd) are directly fed to
FAuST for reduction. FAuST can then output the reduced logs for
downstream SOC tasks, including storing logs to disk or directly
transmitting to log servers (e.g., syslog).

3.4 Log Parsing
FAuST is designed to support multiple audit log formats across
different frameworks. FAuST can be registered with Linux Audit
using the audisp utility and is also compatible with the DARPA
Transparent Computing’s Common Data Model. Due to the exten-
sible nature of FAuST, it can be easily extended to support alternate
logging frameworks. The raw audit logs from the source are fed to
the log parser module that parses the audit logs and constructs two
uniform in-memory representations of log data.

First, the module enqueues each log entry within the log stream
in an event buffer. The buffer contains a unique event ID, all neces-
sary event description fields required for reduction analysis along
with raw log entry associated with each log event. In certain cases,
the event description for a log entry may be dependent on multi-
ple other entries. For instance, while the log entries for read and
write system calls specify the file descriptors, the proper resolution
of these events require the inode information specified in the log
entry of the corresponding open system call. To handle such event
descriptions, the parsing module maintains all possible mappings
between different log entries.

Second, the parser is responsible for incrementally constructing
an in-memory representation of the provenance graph from indi-
vidual event descriptions. In the provenance graph representation,

4

FAuST: Striking a Bargain between Forensic Auditing’s
Security and Throughput ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Handler Source Destination Edge Relation Description
execve/fork Child process Parent process Forked_by An edge is created between the child and parent process.

open File Process Opened_by An edge is created and the inode is added to the process-fd map.
close File Process Closed_by An edge is created and the inode is removed from the process-fd map.
read Process File Used A read edge is created by extracting the inode from the process-fd map.
write File Process Generated_by A write edge is created by extracting the inode from the process-fd map.

unlink File Process Unlinked_by An unlink edge is created and the file node within the graph
is marked as dead

exit Child process Parent process Exited_by An unlink edge is created and the process node within the graph
is marked as dead

connect Socket Process Opened_by An edge is created and the socket address (saddrr) is added to
the process-fd map

recv Process Socket Used A recv edge is created by extracting the saddr from the process-fd map.
send Socket Process Generated_by A send edge is created by extracting the saddr from the process-fd map.

Table 1: Implementation details of various event handlers within FAuST.

nodes correspond to processes, files, and other file-like objects (e.g.,
VFS and network sockets), whereas the edges correspond to the
interactions (events) between these nodes. For each event in the
log event buffer, the parser identifies the subject and object entities
along with the interaction between them. For example, in the case
of file-IO events, the process issuing the system-call acts as the sub-
ject, the target file acts as the object, and the interaction between
them is determined by the type of operation on the file (open, read,
write, close, etc.). For any of the previously unencountered subject
and object entities, the parser adds a new node in the provenance
graph. Similarly, the interaction between the subject and object (e.g,
OPENED_BY, CLOSED_BY, FORKED_BY, etc.) is represented by
adding a new edge between the subject and the object nodes. Each
edge in the provenance graph representation also contains an event
ID that points back to associated log entries in the event buffer.

3.5 Log Filtering
The core filtering logic of FAuST is handled by two modules: event-
driven filters and batch filters. The event-driven filters are applied
locally as the provenance graph is being constructed using event
callback handlers. These filters do not require the global graph state
and operate on the local subgraphs constructed thus far. On the
other hand, the batch filters are applied to the global provenance
graph for the full batch of logs at the end of each epoch. For each
edge (event) in the provenance graph, FAuST maintains a mapping
from event ID to active reduction filters. The mapping results are
passed on to the reduction engine at the end of each epoch.

Because our tool is based on an in-memory database, it was
necessary to manage memory overheads by partitioning the logs
into batches. Since the reduction techniques are applied per batch
at the end of each epoch, the redundant events between epochs
are not identified in FAuST. This makes the observed log reduction
rates in our evaluation an underestimation of the optimal reduction
rates. Fortunately, in experimenting with different epoch sizes, we
observed that the differences in log reduction rates were negligible,
and that a 100k batch size was sufficient to achieve similar log
reduction rates to those reported in prior work. We further discuss
this in Section 5.

3.6 Reduction Engine
The reduction engine is the final module in FAuST’s pipeline. It is re-
sponsible for outputting the reduced logs along with the reduction
statistics. At the end of each epoch, the reduction engine examines
the filter decisions for both event-driven and batch-based filters. It
then cross-references the filter decisions with the log event buffer
to output the reduced audit logs. The reduction engine can be con-
figured to reduce logs using any combination of the eight reduction
techniques. This module is also responsible for mangling or modi-
fying any log entries before they are written to disk. For instance,
in the case of LogApprox [40], the file paths in certain log entries
are replaced with appropriate regexes. Similarly, for NodeMerge
[56], the file paths are replaced with corresponding node templates,
and the templates are also stored on disk. In addition to the reduced
logs, the reduction engine also outputs various reduction statistics,
including filter decisions per event, total size reduction, through-
put and memory footprint of different techniques, etc. We report
these statistics for the DARPA Transparent Computing datasets in
Section 5.

4 IMPLEMENTATION
FAuST is implemented in C++ using 7500 LoC (calculated with
cloc [8]). To foster future research, we have open-sourced our im-
plementation1. For online streaming reduction, the log parsing
module is registered with the Linux Audit subsystem using the
audisp utility. We modified the audisp configuration such that the
logs generated by auditd are directly fed to FAuST without being
written to the disk. Additionally, FAuST can be configured to work
offline and read the log files from local storage to reduce and evalu-
ate existing datasets. Our offline implementation currently supports
the DARPA TC data formats for both Engagement 3 and Engage-
ment 5. Note that users can extend FAuST to work with other log
formats by registering an event callback function that can parse the
respective data format. To generate in-memory provenance graphs,
FAuST leverages the SNAP graph library [32]. The implementa-
tion details of various event handlers within FAuST for provenance
graph generation are outlined in Table 1.
1https://bitbucket.org/sts-lab/faust

5

https://bitbucket.org/sts-lab/faust

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Muhammad Adil Inam, Akul Goyal, Jason Liu, Jaron Mink, Noor Michael, Sneha Gaur, Adam Bates, and Wajih Ul Hassan

Techniques Filter Type Training
Required?

Event
Mangling?

LogGC [31] Local X X
NodeMerge [56] Batch ✓ X
CPR [60] Local X X
F-DPR [22] Batch X X
S-DPR [22] Batch X X
PCAR [60] Local X ✓
LogApprox [40] Batch ✓ ✓
Winnower [14] Batch ✓ ✓

Table 2: Categorization of different filters implemented
within FAuST.

 75

 80

 85

 90

 95

 100

10k
50k

100k
200k

400k
600k

800k
1m

R
e
d

u
ct

io
n
 (

%
)

Batch Size

Figure 2: Observed reduction rates for the E3-Theia dataset
across different batch sizes for all techniques combined.

4.1 Provenance Graph Filters
We reimplemented the eight reduction techniques discussed in
Section 2, based on their descriptions in the original papers. We
implement the techniques as faithfully and staunchly as possible.
Note that because we did not have access to the authors’ source
code, our implementation of these techniques might slightly deviate
from the original systems. After comprehensively reviewing each
technique and its implementation, we are confident that our imple-
mentations align with the methodologies and the designs discussed
in the original papers. A summary of implementation categoriza-
tion is shown in Table 2. Three out of the eight techniques are
implemented as local filters, whereas the remaining five are imple-
mented as batch filters. The implementation details of these filters
and the corresponding algorithms can be found in Appendix A.

5 EVALUATION
We now evaluate the performance of FAuST along with its con-
stituent audit log reduction techniques. To do so, we must first
select a corpora of audit log datasets that describe security inci-
dents. Ideally, we would be able to benchmark FAuST against audit
logs captured in a enterprise the describe real-world intrusions;

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

LogGC

NodeMerge

CPR
F-DPR

S-DPR
PCAR

LogApprox

Winnower

S
iz

e
 R

e
d

u
ct

io
n
 (

%
)

Techniques

E3-Theia
E3-Trace
E5-Theia
E5-Trace

E3-Cadet
E5-Cadet

Figure 3: Observed reduction percentages for each technique
separately using DARPA datasets.

unfortunately, due to the sensitive nature of logs, such datasets are
not publicly available. Instead, we leverage the datasets released
by DARPA Transparent Computing (TC) Program, Engagements
3 and 5 [1] conducted in 2018 and 2019, respectively. The DARPA
TC engagements contains event streams from multiple hosts and
documented ground truth information of the attacks conducted
on the machines. We use the four Linux-based datasets from hosts
running the Theia and Trace systems. Additionally, we use two
FreeBSD-based datasets from hosts running the Cadet system. We
refer to these six datasets as E3-Theia, E3-Trace, E5-Theia, E5-Trace,
E3-Cadet, and E5-Cadet. In contrast to “real” enterprise logs, these
datasets suffer from some notable limitations: first, each dataset
describes one week of system activity; second, benign background
activities were generated by workload generators and may not be
sufficiently representative of real-world behaviors; third, the system
loads were designed to reflect typical workstation behavior, not the
behaviors of fully saturated servers. Because of this, there is a small
risk that our results may not be representative of longer-term use
of FAuST, reflect performance for diverse human interactions with
real-world systems, or capture the challenges of auditing highly-
utilized server machines. This said, the DARPA TC engagements
were the most robust and expansive publicly-available datasets
at the time of this study. Further, they have been widely used for
benchmarking related prior work (e.g., [13, 19, 20, 41]), providing an
opportunity to contrast FAuST’s performance with other systems.

5.1 Batch Size
Asmentioned before, FAuST processes log events in batches to adapt
reduction techniques to a streaming setting and reduce memory
consumption. In our evaluation, we experimented with different
batch sizes (up to 1 million events per batch). The reduction rates
for different batch sizes across all techniques combined for the
E3-Theia dataset are shown in Figure 2. We observe diminishing
returns for batch sizes greater than 100,000 events, i.e., increasing
the batch size from 100,000 to 1 million yields less than 1.5% change

6

FAuST: Striking a Bargain between Forensic Auditing’s
Security and Throughput ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Technique 1 Technique 2 Technique 3 Size Red.
S-DPR PCAR - 87.57% (8.0X)
S-DPR Winnower - 87.81% (8.2X)
S-DPR LogApprox - 88.32% (8.6X)
S-DPR LogGC - 88.53% (8.7X)
S-DPR NodeMerge - 89.17% (9.2X)
S-DPR NodeMerge PCAR 89.19% (9.2X)
S-DPR NodeMerge LogApprox 89.22% (9.3X)
S-DPR LogGC LogApprox 89.48% (9.5X)
S-DPR NodeMerge Winnower 89.63% (9.6X)
S-DPR NodeMerge LogGC 90.24% (10.3X)

All Techniques Combined 90.70% (10.8X)
Table 3: Top 5 2-sized and 3-sized subsets of techniques (with
and without DPR) for all Linux-based datasets combined
and their corresponding reduction rates i.e both log reduc-
tion percentage (1 - Reduced Log / Raw Log) and in paren-
thesis the log reduction factor (Raw Log / Reduced Log).

in reduction across all techniques combined. Therefore, in the rest
of our experiments, we use a batch size of 100,000.

5.2 Storage Reduction
The rate of log reduction across various techniques using DARPA
TC datasets is shown in Figure 3.2 The space efficiency results indi-
cate that the reduction capabilities are significantly impacted by the
dependencies and causalities retained across different techniques.
Most techniques’ performance was roughly consistent with the re-
ported performance from their original papers, with DPR boasting
the most substantial reduction rates. In comparison, techniques
that do not compromise on the information flow in the provenance
graphs and aim to retain either complete causality (CPR) or approx-
imated causality (e.g., PCAR, LogApprox, and Winnower) achieve
lesser size reduction. While DPR techniques outperform all other
techniques, their reduction typically comes at a cost. Micheal et
al. [40] showed that DPR techniques might retain as little as 8% of
forensically relevant evidence for certain attack cases.

In our experiments, LogGC, NodeMerge, and Winnower appear
to underperform across most datasets compared to original reports.
LogGC and NodeMerge both leverage application behaviors, and
their reduction capabilities are primarily impacted by the environ-
ment and workload of the machines, as suggested by the authors
of the respective papers. Additionally, in the case of LogGC, we
observe that the DARPA TC datasets chose not to log many of the
termination events (e.g., EXIT and CLOSE), preventing the LogGC
algorithm from activating. When we tested LogGC against in-lab
datasets, we found its performance more consistent with its original
evaluation. As far as Winnower is concerned, this technique is pro-
posed by Hassan et al. [14] for reducing provenance graphs from
identical containers and is better suited for isomorphic provenance
graphs. Therefore, it might not work as effectively in the context of
a single host. The range of reduction for the rest of the techniques
matches the ones claimed by their respective authors.

2We also analyzed space efficiency in terms of events dropped but observed no signifi-
cant difference in trends compared to size reduction.

 0

 1000

 2000

 3000

 4000

 5000

No-Filter

CPR
PCAR

LogGC

Winnower

LogApprox

NodeMerge

F-DPR
S-DPR

All-Filters

T
h
ro

u
g

h
p

u
t

(E
v
e
n
ts

/s
e
c)

Techniques

Figure 4: Throughput (events ingested per second) for differ-
ent filters in FAuST at 100% CPU utilization.

 0

 20

 40

 60

 80

 100

 120

25k 50k 75k 100k 125k 150k 175k 200k

M
e
m

o
ry

 O
v
e
rh

e
a
d

 (
M

B
)

Batch Size

Figure 5: Memory overhead for different batch sizes in
FAuST.

We also observe that the performance of the different log reduc-
tion techniques varied significantly by dataset. In the most extreme
case, DPR techniques achieve less than 60% reduction for the E3-
Trace dataset in comparison to the ≈90% reduction across the other
five datasets. E3-Trace contains a significantly large proportion
of process events as compared to other datasets. Most reduction
techniques target I/O behavior, which explains the lower overall
reduction rates for E3-Trace. Similarly, CPR and PCAR exhibit sig-
nificantly higher reduction rates in the FreeBSD-based datasets (E3
and E5 Cadet) than others due to differences in simulated work-
loads.

Since FAuST performs reduction at endpoints, the storage re-
duction inherently reduces the cost of log transmission over the
network. For a network MTU of 1500 bytes, the size of TCP/IP
headers (around 40 bytes) results in an ≈2% overhead on top of the
payload. Therefore, a 90% reduction in log size reduces the network
transmission cost by approximately 89.8%. Since many enterprises
use third party cloud-based security products that charge by the
GB (e.g., Splunk [52]), the endpoint reduction performed by signifi-
cantly reduces the financial costs associated with log transmission
and storage.

7

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Muhammad Adil Inam, Akul Goyal, Jason Liu, Jaron Mink, Noor Michael, Sneha Gaur, Adam Bates, and Wajih Ul Hassan

Data % Reduction TP FP TN FN Precision (%) Recall (%) % Attack
Edges Retained

Unfiltered 0 27 24 48253 4 52.94 87.10 100
NodeMerge 10.4 27 24 48253 4 52.94 87.10 100

CPR 22.04 25 29 48248 6 46.30 80.65 98
S-DPR 92.45 4 78 5104 24 4.88 14.29 13.5

CPR + NodeMerge 30.14 25 33 48244 6 43.10 80.65 98
S-DPR + NodeMerge 93.74 4 78 5104 24 4.88 14.29 13.5

Table 4: Detection results of the DeepLog anomaly detection system for NodeMerge, CPR and S-DPR reduced datasets. The
first row represents the baseline numbers for the unfiltered dataset.

5.3 Collective Usage of Multiple Techniques
We also analyze the reduction statistics reported by FAuST to in-
vestigate the benefits of using multiple techniques together. Table
3 shows the size reduction when two, three, or all techniques are
applied to the Linux-based datasets (Theia and Trace). We report
size reduction in terms of both percentage of original log size as
well as the “log reduction factor,” which can be interpreted as the
number of times the reduced log can fit into the storage footprint
of the original log. We observe that the techniques that do not offer
significant individual reduction (e.g., Winnower, NodeMerge, and
LogGC) can still provide value-addition due to the non-overlapping
nature of data patterns exploited by them. The total reduction in-
creases from 88-89% with two techniques and to 89-90% with three
techniques combined. However, there are diminishing returns as
more techniques are applied. With all techniques combined, we
achieve around 90.7% reduction. This suggests that to strike a bet-
ter balance between reduction performance and overhead, FAuST
should realistically be configured with 2 to 3 active reduction filters.

5.4 Throughput Benchmark
An important performance consideration for FAuST is to make sure
that our tool can keep pace with the speed of audit log generation
at the endpoint. To evaluate this, we first measure the event gener-
ation rate of the E3-Theia dataset that remains under 500 events
per second for each batch throughout the dataset. We then measure
our tool’s event throughput rate, i.e., events processed by FAuST
per second. Figure 4 compares the event throughput rate of FAuST
for the E3-Theia dataset under three different configurations: 1)
when no filters are applied, 2) when filters are applied individu-
ally, and 3) when all filters are applied together. We observed that
locally-applicable filters(e.g., LogGC, CPR, and PCAR) applied to
provenance graphs only minimally impacted the event throughput
rate. On the other hand, filters applied periodically at the end of
the batch significantly impact the event throughput rate since they
perform complex graph operations. Note that even with all the filters
applied, the average throughput rate of FAuST (≈790 events/sec) far
outpaces the number of audit logs generated during the DARPA TC
engagement (<500 events/sec).

5.5 Memory Overhead
FAuST makes use of an in-memory database to store uniform rep-
resentations of the log event buffer and the provenance graph. To
manage memory overheads, FAuST partitions the logs into batches

and clears the corresponding in-memory database once the batch
is processed. The memory overhead associated with FAuST for dif-
ferent batch sizes is shown in Figure 5. As expected, the memory
consumption by FAuST directly correlates with the size of the batch.
At an optimal batch size of 100k (as discussed in Section 5.1), the
memory consumption by FAuST remains well under 60 MB, which
is easily manageable on most commodity systems. This further
illustrates the practicality of our tool to operate on commodity
systems with realistic workloads.

5.6 Case Study
To understand the effectiveness of FAuST during threat investiga-
tions when multiple filters are applied, we present a case study
from DARPA TC engagement 3. Figure 6 first depicts the original
provenance graph generated from system-level audit logs during
the Firefox backdoor attack. The green subgraph represents a sim-
plified version of benign system activity, whereas the red subgraph
is a simplified version of the provenance graph that describes the at-
tack. A victim machine, unknowingly running a vulnerable Firefox
54.0.1, establishes a connection with a malicious ad server located
at 146.153.68.151. The server exploits a backdoor in Firefox and in-
jects a binary executable “Drakon” into its process memory. Drakon
subsequently spawns a new process (/home/admin/clean) with root
privileges that connects to the attacker’s server at 161.116.88.72,
giving the attacker full access to the victim machine. We configure
FAuST with three active filters (S-DPR, CPR and NodeMerge) and
replay the audit logs generated during the attack engagement.

The original provenance graph consists of multiple repeated
low-level events between OS objects, such as various read events
between a process and a file, and multiple send/receive events
between a process and a socket. Since CPR merges system call
events between a source and a destination entity as long as there are
no interleaved flows, some of these repeated low-level events (send,
recv, read, etc.) are removed by the CPR filter as shown in the second
graph of Figure 6. Since S-DPR removes all events not necessary to
correctly traverse every entity’s ancestors, only single edges are
preserved between the same source and destination as shown in the
third graph of Figure 6. Moreover, the original provenance graph
consists of specific sets of read-only files that are repeatedly read
during each invocation of the firefox process. Since NodeMerge
identifies and generates templates for the sets of frequent events
that are the same across all program invocations, the repeated sets
of read-only files in the original graph are replaced with individual
templates, as shown in the second and third graph of Figure 6. Given

8

FAuST: Striking a Bargain between Forensic Auditing’s
Security and Throughput ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Send

RecvWrite

Clone

Clone CloneClone Read

cert8.db

Clone

Send Recv

Read

libtinfo.so.5.9

Clone

org.chromium.iyhyahlibdl-2.15.so

ReadRead

Connect

Fluxbox

FireFox

FireFox

FireFox FireFox

SendTo

Recv 130.207.165.120
/home/admin/

clean

Execute
clean 161.116.88.72

Read Read

/etc/hostsresolv.conf

FireFox

128.55.12.110 FireFox

Connect

146.153.68.151

Send

RecvWrite

Clone

Clone CloneClone Read

cert8.db

Clone

Send Recv

Clone

Node Template A

Read

Connect

Fluxbox

FireFox

FireFox

FireFox FireFox

SendTo

Recv 130.207.165.120
/home/admin/

clean

Execute
clean 161.116.88.72

Read

Node Template B

FireFox

128.55.12.110 FireFox

Connect

146.153.68.151

Original Provenance Graph

 CPR + NodeMerge Reduction

RecvWrite

Clone

Clone CloneClone Read

cert8.db

Clone
Recv

Clone

Node Template A

Read

Connect

Fluxbox

FireFox

FireFox

FireFox FireFox

Recv 130.207.165.120
/home/admin/

clean

Execute
clean 161.116.88.72

Read

Node Template B

FireFox

128.55.12.110 FireFox

Connect

146.153.68.151

 S-DPR + NodeMerge Reduction

Figure 6: Provenance graph describing the Firefox backdoor APT attack from the DARPA TC datasets. The graph is first fil-
tered by applying CPR and NodeMerge reduction techniques. The graph is then further reduced by applying the S-DPR and
NodeMerge reduction technique. (node merge templates are shown as blue nodes)

a symptom of the attack, the reduced provenance graph presented to
a security analyst. Both CPR/DPR and NodeMerge exploit different
data access patterns for reducing log size, highlighting the utility
of using multiple filters in FAuST during threat investigations.

In our case study, we additionally investigate if reduction tech-
niques impact the forensic utility of the audit log. To do so, we

analyze the reduced logs using an exemplar anomaly detection
system i.e., DeepLog3 [9]. To create comprehensive ground truth
labels for the attack events in the dataset, we performed back traces
on each of the attack steps described in the E3 documentation, then

3We utilized a 3rd party implementation of DeepLog for our experiments: https:
//github.com/nailo2c/deeplog

9

https://github.com/nailo2c/deeplog
https://github.com/nailo2c/deeplog

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Muhammad Adil Inam, Akul Goyal, Jason Liu, Jaron Mink, Noor Michael, Sneha Gaur, Adam Bates, and Wajih Ul Hassan

manually pruned the results to remove false dependencies. We then
applied NodeMerge, CPR and S-DPR reduction techniques on the
labeled dataset. Using the optimal configurations reported in the
original papers, we then trained DeepLog using a 70/30 train/test
split. DeepLog performed classification at the granularity of indi-
vidual log sequence windows of 1000 ms of log data. We report
TP, FP, TN, FN, recall and precision for this model.4 The results
are shown in Table 4. Across all systems, we observe an inverse
relation between storage efficiency and anomaly detection perfor-
mance. The low-reduction techniques are not associated with any
change in detection performance, while the most aggressive tech-
nique (S-DPR) sees a dramatic drop in the model’s ability to detect
attack sequences and avoid false positives. Our anomaly detection
experiment uncovers a trend in which aggressive log reduction
leads to reduced intrusion detection performance. To further ex-
plore this issue, we recommend that future research on audit log
reduction conduct security analyses not just through demonstrative
anecdotal examples, but also through data-driven analysis of the
impacts on security monitoring software.

6 RELATEDWORK
6.1 Provenance Analysis
There has been a lot of work to leverage data provenance analy-
sis for threat investigation [2, 12, 19, 23, 30, 41, 50, 57, 61]. Back-
tracker [25] introduced the concepts of backward tracing and for-
ward tracing on kernel-level audit logs for intrusion investigations.
Later several systems[28, 29, 35, 37] were introduced to solve the
problem of dependency explosion in the provenance graphs and
enable accurate root cause analysis using provenance graphs. Prio-
Tracker [33] accelerates the forward tracing by prioritizing abnor-
mal events. Zhou et al. [62] designed SNooPy a provenance-based
forensic system for distributed systems that can work under adver-
sarial settings.

Chen et al. [7] introduced the concept of differential provenance
to perform precise root-cause analysis by reasoning about differ-
ences between provenance trees. Elsewhere in the literature, a
provenance graph visualization [5] technique is also proposed to
facilitate data provenance navigation and exploration. As such, all
these existing systems focus on improving the accuracy of prove-
nance graph generation instead of reducing the size of audit logs
to enhance storage efficiency.

6.2 Log Reduction
Besides the existing log reduction systems that we introduced in
Section 2, there are several other log reduction systems proposed
in the literature. Ma et al. [34] introduced KCAL to reduce the size
of logs by caching event dependencies inside the kernel. KCAL
discards all the redundant events indicated by cache hits and caches
only the events that introduce new event dependencies. One advan-
tage of performing in-kernel log reduction is that it eliminates the
overhead of transferring redundant logs from kernel to userspace
and storing them on the disk. However, due to KCAL’s dependency
on kernel instrumentation, we do not leverage KCAL in our work.

4Accuracy can be calculated from the provided data, but is highly misleading due to
the large number of true negatives.

Rather than pruning based on a general application behavior,
Bates et al.’s ProvWalls [3] examines an application’s security policy
to determine the subjects and objects on the system that form its
Trusted Computing Base(TCB), and then prunes all events that fall
outside the TCB. Since it is an application-specific approach, we do
not leverage ProvWalls in our work.

CamQuery [48] translated log analysis to a streaming model
on endpoints using a vertex-centric graph query API. While some
log reduction techniques could likely have been expressed in Cam-
Query as programmable query functions, others could not because
they rely on a global view of the graph that CamQuery did not
support. Hassan et al. [16] also introduce an audit log reduction
technique that only preserves audit log events that are necessary
to generate dependencies between threat alerts and filters out the
rest of the audit logs. However, their proposed technique requires
the audit logs from all the endpoints to build a global provenance
graph; therefore, it is not applicable to our system.

7 CONCLUSION
FAuST is the first decentralized audit log reduction framework that
transparently combines various log reduction techniques to reduce
audit log size at the endpoints. FAuST features two types of in-
memory log filters: 1) local filters that apply locally-applicable log
reduction techniques using event callback handlers and 2) global
filters that apply globally-applicable log reduction techniques in
epochal fashion. We have implemented FAuST for the Linux Audit
subsystem and evaluated it on DAPRA TC datasets to show that
FAuST is modular, highly efficient, and enables users to seamlessly
load and combine different log reduction techniques.

REFERENCES
[1] 2020. DARPA Transparent Computing. 2020. Transparent Computing Engage-

ment 3 Data Release. (2020).
[2] Adam Bates, Dave Tian, Kevin R.B. Butler, and Thomas Moyer. 2015. Trustworthy

Whole-System Provenance for the Linux Kernel. In Proceedings of 24th USENIX
Security Symposium (Washington, D.C.).

[3] Adam Bates, Dave Tian, Grant Hernandez, Thomas Moyer, Kevin R.B. Butler, and
Trent Jaeger. 2017. Taming the Costs of Trustworthy Provenance through Policy
Reduction. ACM Trans. on Internet Technology 17, 4 (sep 2017), 34:1–34:21.

[4] Tara Siegel Bernard, Tiffany Hsu, Nicole Perlroth, and Ron Lieber. 2019. Equifax
Says CyberattackMay Have Affected 143Million in the U.S. https://www.nytimes.
com/2017/09/07/business/equifax-cyberattack.html.

[5] Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Scheidegger, Cláu-
dio T. Silva, and Huy T. Vo. 2006. VisTrails: VisualizationMeets DataManagement.
In Proceedings of the 2006 ACM SIGMOD International Conference on Management
of Data (Chicago, IL, USA) (SIGMOD ’06). ACM, New York, NY, USA, 745–747.
https://doi.org/10.1145/1142473.1142574

[6] Carbon Black. 2018. Global Incident Response Threat Report. https://www.
carbonblack.com/global-incident-response-threat-report/november-2018/. Last
accessed 04-20-2019.

[7] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.
2015. Differential Provenance: Better Network Diagnostics with Reference Events.
In Proceedings of the 14th ACM Workshop on Hot Topics in Networks (HotNets’15)
(Philadelphia, PA).

[8] Albert Danial. 2021. cloc: v1.92. https://doi.org/10.5281/zenodo.5760077
[9] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly

detection and diagnosis from system logs through deep learning. In CCS.
[10] FireEye, Inc. 2019. How Many Alerts is Too Many to Handle? https://www2.

fireeye.com/StopTheNoise-IDC-Numbers-Game-Special-Report.html.
[11] Gartner Peer Insights. 2019. Endpoint Detection and Response Solutions

Market. https://www.gartner.com/reviews/market/endpoint-detection-and-
response-solutions.

[12] Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for provenance auditing
in distributed environments. In ACM/IFIP/USENIX International Conference on
Distributed Systems Platforms and Open Distributed Processing. Springer.

10

https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://doi.org/10.1145/1142473.1142574
https://www.carbonblack.com/global-incident-response-threat-report/november-2018/
https://www.carbonblack.com/global-incident-response-threat-report/november-2018/
https://doi.org/10.5281/zenodo.5760077
https://www2.fireeye.com/StopTheNoise-IDC-Numbers-Game-Special-Report.html
https://www2.fireeye.com/StopTheNoise-IDC-Numbers-Game-Special-Report.html
https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions
https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions

FAuST: Striking a Bargain between Forensic Auditing’s
Security and Throughput ACSAC ’22, December 5–9, 2022, Austin, TX, USA

[13] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer.
2020. Unicorn: Runtime provenance-based detector for advanced persistent
threats. In NDSS.

[14] Wajih Ul Hassan, Lemay Aguse, Nuraini Aguse, Adam Bates, and Thomas Moyer.
2018. Towards scalable cluster auditing through grammatical inference over
provenance graphs. In NDSS.

[15] Wajih Ul Hassan, Nuraini Aguse, Mark Lemay, Thomas Moyer, and Adam Bates.
2018. Towards Scalable Cluster Auditing through Grammatical Inference over
Provenance Graphs. In Proceedings of the 25th ISOC Network and Distributed
System Security Symposium (NDSS’18). San Diego, CA, USA.

[16] Wajih Ul Hassan, Adam Bates, and Daniel Marino. 2020. Tactical provenance
analysis for endpoint detection and response systems. In IEEE Symposium on
Security and Privacy (SP).

[17] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,
Zhichun Li, and Adam Bates. 2019. Nodoze: Combatting threat alert fatigue with
automated provenance triage. In NDSS.

[18] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang, Birhanu Eshete, Rigel
Gjomemo, R. Sekar, Scott Stoller, and V.N. Venkatakrishnan. 2017. SLEUTH: Real-
time Attack Scenario Reconstruction from COTS Audit Data. In 26th USENIX
Security Symposium (USENIX Security 17). USENIX Association, Vancouver,
BC, 487–504. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/hossain

[19] Md Nahid Hossain, Sadegh M Milajerdi, Junao Wang, Birhanu Eshete, Rigel
Gjomemo, R Sekar, Scott Stoller, and VN Venkatakrishnan. 2017. {SLEUTH}:
Real-time attack scenario reconstruction from {COTS} audit data. In USENIX
Security Symposium.

[20] Md Nahid Hossain, Sanaz Sheikhi, and R Sekar. 2020. Combating dependence
explosion in forensic analysis using alternative tag propagation semantics. In
IEEE Symposium on Security and Privacy (SP).

[21] Md Nahid Hossain, Junao Wang, R. Sekar, and Scott D. Stoller. 2018. Dependence-
preserving Data Compaction for Scalable Forensic Analysis. In Proceedings of the
27th USENIX Conference on Security Symposium (Baltimore, MD, USA) (SEC’18).
USENIX Association, Berkeley, CA, USA, 1723–1740. http://dl.acm.org/citation.
cfm?id=3277203.3277331

[22] Md Nahid Hossain, Junao Wang, Ofir Weisse, R Sekar, Daniel Genkin, Boyuan He,
Scott D Stoller, Gan Fang, Frank Piessens, Evan Downing, et al. 2018. Dependence-
preserving data compaction for scalable forensic analysis. In USENIX Security
Symposium.

[23] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia Fazzini, Taesoo Kim,
Alessandro Orso, and Wenke Lee. 2017. Rain: Refinable attack investigation with
on-demand inter-process information flow tracking. In CCS.

[24] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Latifur Khan. 2017. SGX-
Log: Securing System Logs With SGX. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security (ASIA CCS ’17).

[25] Samuel T. King and Peter M. Chen. 2003. Backtracking Intrusions. In Pro-
ceedings of the Nineteenth ACM Symposium on Operating Systems Principles
(Bolton Landing, NY, USA) (SOSP ’03). ACM, New York, NY, USA, 223–236.
https://doi.org/10.1145/945445.945467

[26] Brendan I. Koerner. 2016. Inside the Cyberattack That Shocked the US
Government. https://www.wired.com/2016/10/inside-cyberattack-shocked-us-
government/.

[27] George Kurtz. 2010. Operation Aurora Hit Google, Others. Available at http:
//securityinnovator.com/index.php?articleID=42948§ionID=25.

[28] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan Lee,
Shiqing Ma, Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela F Ciocarlie, et al.
2018. MCI: Modeling-based Causality Inference in Audit Logging for Attack
Investigation.. In NDSS.

[29] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack
Provenance via Binary-based Execution Partition.. In NDSS.

[30] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. LogGC: Garbage
Collecting Audit Log. In Proceedings of the 2013 ACM SIGSAC conference on
Computer and Communications Security (Berlin, Germany) (CCS ’13). ACM, New
York, NY, USA, 1005–1016. https://doi.org/10.1145/2508859.2516731

[31] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. LogGC: garbage
collecting audit log. In CCS.

[32] Jure Leskovec. 2009. Stanford network analysis package. Online, http://snap.
stanford. edu (2009).

[33] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-
wan Rhee, and Prateek Mittal. 2018. Towards a Timely Causality Analysis for
Enterprise Security.. In NDSS.

[34] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu Zhang, Gabriela
Ciocarlie, Ashish Gehani, Vinod Yegneswaran, Dongyan Xu, and Somesh Jha.
2018. Kernel-Supported Cost-Effective Audit Logging for Causality Tracking. In
2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX Association,
Boston, MA, 241–254. https://www.usenix.org/conference/atc18/presentation/
ma-shiqing

[35] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. 2017. {MPI}: Multiple perspective attack investigation with semantic aware

execution partitioning. In USENIX Security Symposium.
[36] ShiqingMa, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards Practical

Provenance Tracing by Alternating Between Logging and Tainting. In Proceedings
of NDSS ’16 (San Diego, CA).

[37] ShiqingMa, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards Practical
Provenance Tracing by Alternating Between Logging and Tainting. In NDSS.

[38] Keith McCammon. 2018. Evaluating Endpoint Products. https://redcanary.com/
blog/evaluating-endpoint-products-in-a-crowded-confusing-market/.

[39] Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wajih Ul Hassan, and Adam
Bates. 2020. On the Forensic Validity of Approximated Audit Logs. In Annual
Computer Security Applications Conference (Austin, USA) (ACSAC ’20). Association
for Computing Machinery, New York, NY, USA, 189–202. https://doi.org/10.
1145/3427228.3427272

[40] Noor Michael, Jaron Mink, Jason Liu, Sneha Gaur, Wajih Ul Hassan, and Adam
Bates. 2020. On the Forensic Validity of Approximated Audit Logs. In ACSAC.

[41] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan.
2019. Poirot: Aligning attack behavior with kernel audit records for cyber threat
hunting. In CCS.

[42] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and Venkat N Venkatakr-
ishnan. 2018. Propatrol: Attack investigation via extracted high-level tasks. In
International Conference on Information Systems Security. Springer.

[43] MITRE Corporation. 2019. APT29. https://attack.mitre.org/groups/G0016/.
[44] MITRE Corporation. 2019. APT3. https://attack.mitre.org/groups/G0022/.
[45] MITRE Corporation. 2019. MITRE ATT&CK. https://attack.mitre.org.
[46] Kiran-KumarMuniswamy-Reddy, David A. Holland, Uri Braun, andMargo Seltzer.

2006. Provenance-aware Storage Systems. In Proceedings of the Annual Conference
on USENIX ’06 Annual Technical Conference (Boston, MA) (Proceedings of the 2006
Conference on USENIX Annual Technical Conference).

[47] Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Adam Bates, Christopher W.
Fletcher, Andrew Miller, and Dave Tian. 2020. Custos: Practical Tamper-Evident
Auditing of Operating Systems Using Trusted Execution. In 27th ISOC Network
and Distributed System Security Symposium (NDSS’20).

[48] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier Hermant,
David Eyers, Jean Bacon, and Margo Seltzer. 2018. Runtime analysis of whole-
system provenance. In CCS.

[49] Nicole Perlroth and David E. Sanger. 2018. Cyberattacks Put Russian Fingers on
the Switch at Power Plants, U.S. Says. https://www.nytimes.com/2018/03/15/us/
politics/russia-cyberattacks.html.

[50] D.J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. 2012. Hi-Fi: Collecting High-
Fidelity Whole-System Provenance. In Proceedings of the 2012 Annual Computer
Security Applications Conference (ACSAC ’12). Orlando, FL, USA.

[51] Michael Riley, Ben Elgin, Dune Lawrence, and Carol Matlack. 2019. Target Missed
Warnings in Epic Hack of Credit Card Data. https://bloom.bg/2KjElxM.

[52] Dan Sullivan. 2016. Splunk Enterprise Security: Product overview.
https://www.techtarget.com/searchsecurity/feature/Splunk-Enterprise-
Security-Product-overview.

[53] Symantec EDR 4.6 Docs. 2022. About purging reports. https://techdocs.
broadcom.com/us/en/symantec-security-software/endpoint-security-
and-management/endpoint-detection-and-response/4-6/about-reports-
v117056913-d38e36074/about-purging-reports-v118097546-d38e36892.html.

[54] Symantec EDR 4.6 Docs. 2022. How Symantec EDR purges data from the
Symantec EDR database. https://techdocs.broadcom.com/us/en/symantec-
security-software/endpoint-security-and-management/endpoint-detection-
and-response/4-6/Settings/how-purges-data-from-the-database-v106460598-
d38e46998.html.

[55] Yutao Tang, Ding Li, Zhichun Li,MuZhang, Kangkook Jee, XushengXiao, Zhenyu
Wu, Junghwan Rhee, Fengyuan Xu, and Qun Li. 2018. NodeMerge: Template
Based Efficient Data Reduction For Big-Data Causality Analysis. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 1324–1337. https:
//doi.org/10.1145/3243734.3243763

[56] Yutao Tang, Ding Li, Zhichun Li,MuZhang, Kangkook Jee, XushengXiao, Zhenyu
Wu, Junghwan Rhee, Fengyuan Xu, and Qun Li. 2018. Nodemerge: template
based efficient data reduction for big-data causality analysis. In CCS.

[57] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. 2018. Fear and logging
in the internet of things. In NDSS.

[58] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Jungh-
wan Rhee, Zhengzhang Chen, Wei Cheng, C Gunter, et al. 2020. You are what
you do: Hunting stealthy malware via data provenance analysis. In NDSS.

[59] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng
Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. 2016. High Fidelity Data
Reduction for Big Data Security Dependency Analyses. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security (Vienna,
Austria) (CCS ’16). ACM, New York, NY, USA, 504–516. https://doi.org/10.1145/
2976749.2978378

[60] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng
Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. 2016. High fidelity data
reduction for big data security dependency analyses. In CCS.

11

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hossain
http://dl.acm.org/citation.cfm?id=3277203.3277331
http://dl.acm.org/citation.cfm?id=3277203.3277331
https://doi.org/10.1145/945445.945467
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
http://securityinnovator.com/index.php?articleID=42948§ionID=25
http://securityinnovator.com/index.php?articleID=42948§ionID=25
https://doi.org/10.1145/2508859.2516731
https://www.usenix.org/conference/atc18/presentation/ma-shiqing
https://www.usenix.org/conference/atc18/presentation/ma-shiqing
https://redcanary.com/blog/evaluating-endpoint-products-in-a-crowded-confusing-market/
https://redcanary.com/blog/evaluating-endpoint-products-in-a-crowded-confusing-market/
https://doi.org/10.1145/3427228.3427272
https://doi.org/10.1145/3427228.3427272
https://attack.mitre.org/groups/G0016/
https://attack.mitre.org/groups/G0022/
https://attack.mitre.org
https://www.nytimes.com/2018/03/15/us/politics/russia-cyberattacks.html
https://www.nytimes.com/2018/03/15/us/politics/russia-cyberattacks.html
https://bloom.bg/2KjElxM
https://www.techtarget.com/searchsecurity/feature/Splunk-Enterprise-Security-Product-overview
https://www.techtarget.com/searchsecurity/feature/Splunk-Enterprise-Security-Product-overview
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-detection-and-response/4-6/about-reports-v117056913-d38e36074/about-purging-reports-v118097546-d38e36892.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-detection-and-response/4-6/about-reports-v117056913-d38e36074/about-purging-reports-v118097546-d38e36892.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-detection-and-response/4-6/about-reports-v117056913-d38e36074/about-purging-reports-v118097546-d38e36892.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-detection-and-response/4-6/about-reports-v117056913-d38e36074/about-purging-reports-v118097546-d38e36892.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-detection-and-response/4-6/Settings/how-purges-data-from-the-database-v106460598-d38e46998.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-detection-and-response/4-6/Settings/how-purges-data-from-the-database-v106460598-d38e46998.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-detection-and-response/4-6/Settings/how-purges-data-from-the-database-v106460598-d38e46998.html
https://techdocs.broadcom.com/us/en/symantec-security-software/endpoint-security-and-management/endpoint-detection-and-response/4-6/Settings/how-purges-data-from-the-database-v106460598-d38e46998.html
https://doi.org/10.1145/3243734.3243763
https://doi.org/10.1145/3243734.3243763
https://doi.org/10.1145/2976749.2978378
https://doi.org/10.1145/2976749.2978378

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Muhammad Adil Inam, Akul Goyal, Jason Liu, Jaron Mink, Noor Michael, Sneha Gaur, Adam Bates, and Wajih Ul Hassan

Algorithm 2: NodeMerge
Input :
rawEvents: Original audit raw events
Output :
reducedEvents: Audit events filtered using NodeMerge

1 Function NodeMerge():
2 // Phase-1 : Learning Templates;
3 FAP← generateFAP(rawEvents);
4 FAP← FAP.filter(); // only keep read-only files for each process;
5 root← new FPTreeNode();
6 foreach process, file_list ∈ FAP do
7 FPTreeInsert(file_list, root);
8 // CFAPS obtained by applying FP Growth algrithm on FP Tree
9 CFAPS← set of files that appears > 2 times together in the FAP;

10 // Phase-2 : Reducing Logs;
11 reducedEvents← [];
12 FSA← buildFSA(CFAPS);
13 foreach process, file_list ∈ FAP do
14 if file_list mathces FSA then
15 eventList← All read events corresponding to FAP entry;
16 reducedEvents.append(eventList);
17 return reducedEvents;

18 Function generateFAP(E: events):
19 Map FAP←∅;
20 Map StartTime←∅;
21 k← 2; // length of the initial stage in seconds;
22 foreach e ∈ E with process p do
23 if e is a process start event then
24 FAP[p]← [];
25 StartTime[p]← e.timeStamp;
26 else if e is a file read event ∧ (e.timeStamp - StartTime[p]) < k then
27 FAP[p].append(e.file);
28 return FAP;

29 Function FPTreeInsert(F: file list, N: node):
30 if F[0].file_id == N.file_id then
31 N.counter++;
32 FPTreeInsert(F[1:], N);
33 else
34 Add F[0] as a child of N;
35 FPTreeInsert(F[1:], F[0]);

36 Function buildFSA(L: file set):
37 FSA,F←∅;
38 Add an initial state, Init, for F;
39 foreach cfap ∈ L do
40 Rank items in cfap based on their file IDs in list r;
41 forall i ∈ [0,r.length) do
42 create state Sr[i] in F;
43 Add transition (Sr[i], r[i])→ Sr[i+1] to F;
44 Add transition (Sr[i], !r[i])→ Sr[i] to F;
45 Add transition (Init, r[0])→ Sr[1] to F;
46 Reduce F;
47 return FSA;

Algorithm 3: Causality Preserved Reduction
Input :
e: the edge which is going to be worked on
src: the source node of an event edge
dst: the destination node of an event edge

1 Function CPR(e: edge, src: node, dst: node):
2 // Create edge between source node and destination node;
3 e0 ← the edge between (src, dst) with greatest end timestamp;
4 if e0 does not exist ∨ ¬ interleavedFlow(e0, src) then
5 e.remove(); // remove this edge;
6 e0.end← e.end;

7 Function interleavedFlow(v: edge, vsrc: node):
8 foreach 𝑖𝑡 ∈ the in-edges of vsrc do
9 if it.end > v.end then
10 return True;
11 return False;

[61] Carter Yagemann, Mohammad Noureddine, Wajih Ul Hassan, Simon Chung,
Adam Bates, and Wenke Lee. 2021. Validating the Integrity of Audit Logs Against
Execution Repartitioning Attacks. In CCS.

[62] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo,
and Micah Sherr. 2011. Secure Network Provenance. In ACM Symposium on
Operating Systems Principles (SOSP).

A REDUCTION ALGORITHMS
A.1 LogGC
The implementation of the LogGC filter is shown in Algorithm 1.
While the original LogGC system [31] was described as an offline
log-based algorithm, we re-implemented the system in an event-
driven fashion. This event-driven filter is invoked upon file and
process termination events. The filter identifies and prunes tempo-
rary file I/O and other dead-end events from the raw audit logs.

Algorithm 1: Garbage Collection (LogGC)
Input :
n: The node in the provenance graph
Output :
newEvents: audit events filtered after grabage collection

1 Function LogGC(n : node):
2 if can_perform_gc(n) then
3 forall edges e ∈ n.get_edges() do
4 e.remove();
5 forall node i ∈ n.get_parents_nodes() do
6 LogGC(i);

7 Function can_perform_gc(v : node):
8 if is_process(v) ∧ is_dead(v) ∧ not_affect_state(v) then
9 return True;

10 else if is_file(v) ∧ is_deleted(v) ∧ is_temp_file() then
11 return True;
12 else if is_file(v) ∧ is_dead_end(v) then
13 return True;
14 else
15 return False;

A.2 NodeMerge
The implementation of the NodeMerge filter is presented in Al-
gorithm 2. It is invoked at the end of each batch and consists of
three phases. In the first phase, the File Access Pattern (FAP) is
generated from the raw audit logs. In the next phase, FAP is utilised
to generate the Compressible File Access Pattern (CFAP) for data
reduction. In the final phase, CFAP is used to reduce the incoming
streamed data.

A.3 CPR
The implementation of the CPR filter is shown in Algorithm 3. The
CPR filter is invoked for every read or write event corresponding
to an edge between source node 𝑠 and destination node 𝑑 . The
filter checks that there are no interleaved flows that would result in
false data dependencies, if so, the previous edge 𝑒0 and new edge
𝑒 are merged into a single edge with 𝑒0’s start timestamp and 𝑒’s
end timestamp. Otherwise, if no reduction can be performed, both
edges are left intact. We inductively know that no edges other than
𝑒0 need to be checked, as 𝑒0 must already be merged as much as
possible due to FAuST’ streaming architecture.

A.4 F-DPR and S-DPR
The implementation of the S-DPR and F-DPR filters is outlined in
Algorithm 4. These algorithms require graph-wide analysis, and are
thus applied periodically at the end of each batch. The objective of
F-DPR is to reduce the set 𝐸 to the smallest edge set where forwards

12

FAuST: Striking a Bargain between Forensic Auditing’s
Security and Throughput ACSAC ’22, December 5–9, 2022, Austin, TX, USA

and backwards reachability between all nodes (𝑁) is preserved. S-
DPR ismore aggressive, and reduces 𝐸 to the smallest set where only
backwards reachability for all nodes in 𝑁 to the all source nodes in
𝑆 is preserved. Reachability is determined via breadth-first search
(BFS), where nodes are visited in order of timestamps. To maintain
backwards reachability, we compute the set of nodes that a given
node 𝑛 can reach; for each of these nodes, 𝑛 is backwards-reachable.
To maintain forward reachability, we compute the reverse, i.e., the
set of nodes that can reach 𝑛. Once we know the set of reachable
nodes 𝑅 from starting node 𝑠 , we compute the set of edges required
to maintain reachability such that, for each node 𝑛 in 𝑅, we only
retain the oldest in-edge from another node in 𝑅 to 𝑛.

Algorithm 4: Full and Source-Dependence Preserving Red.
Input :
G: Provenance graph consisting of audit events
E: The set of all edges in the G
N: The set of all nodes in the G

1 Function SDPR():
2 Set S← {𝑛 ∈ 𝑁 |𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (𝑛) = 0};
3 Set R← E \ required_edges(S);
4 foreach edge r ∈ R do
5 r.remove();

6 Function FDPR():
7 Set S← N;
8 Set R𝑏 ← E \ required_edges(S);
9 Set R𝑓 ← required_edges_forwards(S); // required_edges_forwards(S) is

identical to required_edges, but for forward reachability;
10 R← E \ R𝑏 \ R𝑓 ;
11 foreach edge r ∈ R do
12 r.remove();

13 Function required_edges(S: node set):
14 Set E←∅;
15 foreach node s ∈ S do
16 R← backReach_bfs(s);
17 foreach node r in R where r ≠ s do
18 e← oldest edge where r is the in-node ∧ both nodes of e ∈ R;
19 E.add(e);
20 return E;

21 Function backReach_bfs(start: node):
22 Set R←∅;
23 Set Q← PriorityQueue((start, −∞)); // priority queue of (node, timestamp)

pairs - priority: greatest timestamp;
24 while Q 𝑛𝑒𝑞 ∅ do
25 n, t← Q.dequeue();
26 R.add(n);
27 foreach edge e = (n, u) ∈ n.get_out_edges() where u ∉ R ∧ e.start ≥ t

do
28 Q.enqueue((u, t));
29 return R;

A.5 PCAR
Algorithm 5 presents the implementation of the PCAR filter. The
filter extends the CPR system and is invoked for every read or
write event corresponding to an edge between source node 𝑠 and
destination node 𝑑 . It eliminates redundant events (even for inter-
leaved flows) when a bursty process exceeds a pre-defined number
of system calls within a time window. The filter track bursts by
keeping a sliding window of recent IO activity, represented as an
event set per node. Whenever an edge 𝑒 is created from source 𝑠 to
destination 𝑑 , we update this window for both 𝑠 and 𝑑 by adding 𝑒
to the set and discarding any events that no longer fall within the
window. Then, if the event set size is large enough to be considered
a burst, we set the burst flag for the node. Finally, the filter checks if

either 𝑠 or 𝑑 have the burst flag set; if so, it merges 𝑒 with previous
edge 𝑒0.

Algorithm 5: Process-centric Causality Approx Red.
Input :
e: the edge which is going to be worked on
src: the source node of an event edge
dst: the destination node of an event edge
IBURST_WINDOW: length of the sliding time window for recent IO activity
IBURST_EVENTS: min. number of events that constitute a burst

1 Function PCAR(e: edge, src: node, dst: node):
2 track_burst(e.event, src);
3 track_burst(e.event, dst);
4 e0 ← the edge between (src, dst) with greatest end timestamp;
5 if e0 does not exist ∨ ¬ interleavedFlow(e0, src) ∨ src.is_burst ∨

dst.is_burst then
6 e.remove();
7 e0.end← e.end;

8 Function track_burst(v: edge, vsrc: node):
9 foreach event e’ ∈ vsrc.burst_set do
10 if e’.time + IBURST_WINDOW < v.time then
11 vsrc.burst_set.remove(e’);
12 vsrc.burst_set.add(v);
13 if vsrc.burst_set.size() ≥ IBURST_EVENTS then
14 vsrc.is_burst← True;
15 else
16 vsrc.is_burst← False;

Algorithm 6: LogApprox
Input :
G: Provenance graph consisting of audit events
E: The set of all edges (events) in the G
N: The set of all nodes in the G

1 Function LogApprox():
2 Set S← compute_file_groups;
3 Set R← compute_regexes(S);
4 foreach group S𝑖 ∈ S do
5 forall reads e to file f ∈ S𝑖 do
6 if since last read, a write to f happened ∨ a read from p to a file ≠ f then
7 Keep e;
8 Overwrite f with r𝑖 ;
9 else
10 e.remove();
11 forall writes e to file f ∈ S𝑖 do
12 if since last read, a write to f happened ∨ a read from p to a file ≠ f then
13 Keep e;
14 Overwrite f with r𝑖 ;
15 else
16 e.remove();

Algorithm 7: Deterministic Finite Automata Winnower
Input :
G: Provenance graph consisting of audit events
Output :
removedEvents: audit events filtered through winnower

1 Function Winnower():
2 Set Gram←∅;
3 List removedEvents← [];
4 foreach node ∈ G do
5 𝜏𝑝𝑟𝑒 𝑓 𝑖𝑥 ← getPrefixTree(node);
6 𝜏𝑠𝑢𝑓 𝑓 𝑖𝑥 ← getSuffixTree(node);
7 if {𝜏𝑝𝑟𝑒 𝑓 𝑖𝑥 , 𝜏𝑠𝑢𝑓 𝑓 𝑖𝑥 } ∈ Gram then
8 // get all events associated with node;
9 nodeEvents← getEvents(node);

10 removedEvents.append(nodeEvents);
11 else
12 Gram← Gram ∪ {𝜏𝑝𝑟𝑒 𝑓 𝑖𝑥 , 𝜏𝑠𝑢𝑓 𝑓 𝑖𝑥 , vertex.label};
13 return removedEvents;

13

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Muhammad Adil Inam, Akul Goyal, Jason Liu, Jaron Mink, Noor Michael, Sneha Gaur, Adam Bates, and Wajih Ul Hassan

A.6 LogApprox
The implementation of the LogApprox filter is shown in Algo-
rithm 6. The filter is invoked periodically at the end of each batch
and consists of two phases. First, it generates regular expressions
that describe benign process file I/O. Second, for all events that
match the same regex, the original filename is replaced with the
regex pattern. After the filenames are replaced, all the events that
do not alter the information flow are removed from the logs.

A.7 Winnower
The implementation of theWinnower filter is shown in Algorithm 7.
The filter is invoked at the end of each batch. It first generates the
prefix tree sets and suffix tree sets for each vertex in Graph, and
the results are used to create a grammar. Afterward, if the same
tuple defines two vertices within the grammar, they are considered
equivalent and implicitly merged in the final graph.

14

	Abstract
	1 Introduction
	2 Log Reduction Techniques
	3 System Design
	3.1 Threat Model & Assumptions
	3.2 Design Goals
	3.3 Overview
	3.4 Log Parsing
	3.5 Log Filtering
	3.6 Reduction Engine

	4 Implementation
	4.1 Provenance Graph Filters

	5 Evaluation
	5.1 Batch Size
	5.2 Storage Reduction
	5.3 Collective Usage of Multiple Techniques
	5.4 Throughput Benchmark
	5.5 Memory Overhead
	5.6 Case Study

	6 Related Work
	6.1 Provenance Analysis
	6.2 Log Reduction

	7 Conclusion
	References
	A Reduction Algorithms
	A.1 LogGC
	A.2 NodeMerge
	A.3 CPR
	A.4 F-DPR and S-DPR
	A.5 PCAR
	A.6 LogApprox
	A.7 Winnower

